838 resultados para Hardware-based security
Resumo:
The usage of COTS-based multicores is becoming widespread in the field of embedded systems. Providing realtime guarantees at design-time is a pre-requisite to deploy real-time systems on these multicores. This necessitates the consideration of the impact of the contention due to shared low-level hardware resources on the Worst-Case Execution Time (WCET) of the tasks. As a step towards this aim, this paper first identifies the different factors that make the WCET analysis a challenging problem in a typical COTS-based multicore system. Then, we propose and prove, a mathematically correct method to determine tight upper bounds on the WCET of the tasks, when they are co-scheduled on different cores.
Resumo:
Temporal isolation is an increasingly relevant con- cern in particular for ARINC-351 and virtualisation- based systems. Traditional approaches like the rate- based scheduling framework RBED do not take into account the impact of preemptions in terms of loss of working set in the acceleration hardware (e.g. caches). While some improvements have been suggested in the literature, they are overly heavy in the presence of small high-priority tasks such as interrupt service routines. Within this paper we propose an approach enabling adaptive assessment of this preemption delay in a tem- poral isolation framework with special consideration of capabilities and limitations of the approach.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
This paper presents the design and compares the performance of linear, decoupled and direct power controllers (DPC) for three-phase matrix converters operating as unified power flow controllers (UPFC). A simplified steady-state model of the matrix converter-based UPFC fitted with a modified Venturini high-frequency pulse width modulator is first used to design the linear controllers for the transmission line active (P) and reactive (Q) powers. In order to minimize the resulting cross coupling between P and Q power controllers, decoupled linear controllers (DLC) are synthesized using inverse dynamics linearization. DPC are then developed using sliding-mode control techniques, in order to guarantee both robustness and decoupled control. The designed P and Q power controllers are compared using simulations and experimental results. Linear controllers show acceptable steady-state behaviour but still exhibit coupling between P and Q powers in transient operation. DLC are free from cross coupling but are parameter sensitive. Results obtained by DPC show decoupled power control with zero error tracking and faster responses with no overshoot and no steady-state error. All the designed controllers were implemented using the same digital signal processing hardware.
Resumo:
This paper proposes a multifunctional architecture to implement field-programmable gate array (FPGA) controllers for power converters and presents a prototype for a pulsed power generator based on a solid-state Marx topology. The massively parallel nature of reconfigurable hardware platforms provides very high processing power and fast response times allowing the implementation of many subsystems in the same device. The prototype includes the controller, a failure detection system, an interface with a safety/emergency subsystem, a graphical user interface, and a virtual oscilloscope to visualize the generated pulse waveforms, using a single FPGA. The proposed architecture employs a modular design that can be easily adapted to other power converter topologies.
Resumo:
Weblabs are spreading their influence in Science and Engineering (S&E) courses providing a way to remotely conduct real experiments. Typically, they are implemented by different architectures and infrastructures supported by Instruments and Modules (I&Ms) able to be remotely controlled and observed. Besides the inexistence of a standard solution for implementing weblabs, their reconfiguration is limited to a setup procedure that enables interconnecting a set of preselected I&Ms into an Experiment Under Test (EUT). Moreover, those I&Ms are not able to be replicated or shared by different weblab infrastructures, since they are usually based on hardware platforms. Thus, to overcome these limitations, this paper proposes a standard solution that uses I&Ms embedded into Field-Programmable Gate Array (FPGAs) devices. It is presented an architecture based on the IEEE1451.0 Std. supported by a FPGA-based weblab infrastructure able to be remotely reconfigured with I&Ms, described through standard Hardware Description Language (HDL) files, using a Reconfiguration Tool (RecTool).
Resumo:
Adopting standard-based weblab infrastructures can be an added value for spreading their influence and acceptance in education. This paper suggests a solution based on the IEEE1451.0 Std. and FPGA technology for creating reconfigurable weblab infrastructures using Instruments and Modules (I&Ms) described through standard Hardware Description Language (HDL) files. It describes a methodology for creating and binding I&Ms into an IEEE1451-module embedded in a FPGA-based board able to be remotely controlled/accessed using IEEE1451-HTTP commands. At the end, an example of a step-motor controller module bond to that IEEE1451-module is described.
Resumo:
Nos últimos anos, o avanço da tecnologia e a miniaturização de diversos componentes têm permitido o aparecimento de novos conceitos, ideias e projetos, que até aqui não passariam de filmes de ficção científica. Com a tecnologia atual, podem ser desenvolvidos pequenos dispositivos wearable com diversas interfaces, múltiplas conectividades, poder de processamento e autonomia. Permitindo desta forma, dar resposta à crescente necessidade de interação com os mais diversos equipamentos eletrónicos do dia-a-dia, melhorando o acesso e o fornecimento de informação. O principal objetivo deste trabalho passa assim por demonstrar e implementar um conceito que permita estreitar e facilitar a interação entre o utilizador e o mundo que o rodeia, quer em ambientes domésticos quer industriais. Para isso foi projetado e implementado um dispositivo wearable (para utilização no pulso) baseado numa arquitetura de hardware e software capaz de correr diferentes aplicações, tais como extensão de alertas de um smartphone, crowdsourcing de informações meteorológicas, manutenção e inspeção industrial e monitorização remota de forças de segurança. Os resultados obtidos demonstram que este conceito é viável tanto do ponto de vista técnico como funcional, evidenciando boas hipóteses para que estes conceitos, métodos e tecnologias possam ser integradas em plataformas robóticas desenvolvidas no âmbito de projetos do Laboratório de Sistemas Autónomos (LSA) bem como nos contextos industrial e de lazer.
Resumo:
São vários os factores sociais e económicos que valorizam a aplicação de tecnologias de domótica em edifícios. No caso particular dos edifícios residenciais, a tendência dos seus utilizadores é a instalação de sistemas de controlo da segurança, do ambiente, de mecanismos de rega e de alarmes. Assim, seguindo a premissa do marketing, que identifica como uma boa prática a projecção de produtos / serviços que satisfaçam as necessidades inventariadas pelos seus utilizadores, este trabalho assenta na criação de um sistema domótico, controlado remotamente através de uma aplicação Android, que pretende, numa primeira instância, o controlo das lâmpadas de uma habitação. Neste trabalho é utilizado o protocolo KNX.TP para a comunicação dos dispositivos de domótica existentes no ISEP, que constituem o ambiente domótico deste trabalho. De forma a implementar o controlo remoto destes dispositivos via internet, este trabalho foca-se no desenvolvimento de uma interface IP-KNX, usando como hardware de controlo, um Arduino Mega 2560, uma placa de interface Ethernet para Arduino, a placa de integração KNX, e um servidor web com a linguagem PHP instalada. Para efeitos de demonstração, foi criada uma aplicação para o SO Android que controla as lâmpadas da rede KNX. Neste trabalho foram utilizadas várias linguagens de programação: C++ no firmware do Arduino, PHP no servidor web e JAVA + XML na aplicação Android.
Resumo:
Reconfigurable computing experienced a considerable expansion in the last few years, due in part to the fast run-time partial reconfiguration features offered by recent SRAM-based Field Programmable Gate Arrays (FPGAs), which allowed the implementation in real-time of dynamic resource allocation strategies, with multiple independent functions from different applications sharing the same logic resources in the space and temporal domains. However, when the sequence of reconfigurations to be performed is not predictable, the efficient management of the logic space available becomes the greatest challenge posed to these systems. Resource allocation decisions have to be made concurrently with system operation, taking into account function priorities and optimizing the space currently available. As a consequence of the unpredictability of this allocation procedure, the logic space becomes fragmented, with many small areas of free resources failing to satisfy most requests and so remaining unused. A rearrangement of the currently running functions is therefore necessary, so as to obtain enough contiguous space to implement incoming functions, avoiding the spreading of their components and the resulting degradation of system performance. A novel active relocation procedure for Configurable Logic Blocks (CLBs) is herein presented, able to carry out online rearrangements, defragmenting the available FPGA resources without disturbing functions currently running.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologias da Universidade Nova de Lisboa para a obtenção do Grau de Mestre em Engenharia Informática
Resumo:
Hyperspectral imaging has become one of the main topics in remote sensing applications, which comprise hundreds of spectral bands at different (almost contiguous) wavelength channels over the same area generating large data volumes comprising several GBs per flight. This high spectral resolution can be used for object detection and for discriminate between different objects based on their spectral characteristics. One of the main problems involved in hyperspectral analysis is the presence of mixed pixels, which arise when the spacial resolution of the sensor is not able to separate spectrally distinct materials. Spectral unmixing is one of the most important task for hyperspectral data exploitation. However, the unmixing algorithms can be computationally very expensive, and even high power consuming, which compromises the use in applications under on-board constraints. In recent years, graphics processing units (GPUs) have evolved into highly parallel and programmable systems. Specifically, several hyperspectral imaging algorithms have shown to be able to benefit from this hardware taking advantage of the extremely high floating-point processing performance, compact size, huge memory bandwidth, and relatively low cost of these units, which make them appealing for onboard data processing. In this paper, we propose a parallel implementation of an augmented Lagragian based method for unsupervised hyperspectral linear unmixing on GPUs using CUDA. The method called simplex identification via split augmented Lagrangian (SISAL) aims to identify the endmembers of a scene, i.e., is able to unmix hyperspectral data sets in which the pure pixel assumption is violated. The efficient implementation of SISAL method presented in this work exploits the GPU architecture at low level, using shared memory and coalesced accesses to memory.
Resumo:
Este documento descreve um modelo de tolerância a falhas para sistemas de tempo-real distribuídos. A sugestão deste modelo tem como propósito a apresentação de uma solu-ção fiável, flexível e adaptável às necessidades dos sistemas de tempo-real distribuídos. A tolerância a falhas é um aspeto extremamente importante na construção de sistemas de tempo-real e a sua aplicação traz inúmeros benefícios. Um design orientado para a to-lerância a falhas contribui para um melhor desempenho do sistema através do melhora-mento de aspetos chave como a segurança, a confiabilidade e a disponibilidade dos sis-temas. O trabalho desenvolvido centra-se na prevenção, deteção e tolerância a falhas de tipo ló-gicas (software) e físicas (hardware) e assenta numa arquitetura maioritariamente basea-da no tempo, conjugada com técnicas de redundância. O modelo preocupa-se com a efi-ciência e os custos de execução. Para isso utilizam-se também técnicas tradicionais de to-lerância a falhas, como a redundância e a migração, no sentido de não prejudicar o tempo de execução do serviço, ou seja, diminuindo o tempo de recuperação das réplicas, em ca-so de ocorrência de falhas. Neste trabalho são propostas heurísticas de baixa complexida-de para tempo-de-execução, a fim de se determinar para onde replicar os componentes que constituem o software de tempo-real e de negociá-los num mecanismo de coordena-ção por licitações. Este trabalho adapta e estende alguns algoritmos que fornecem solu-ções ainda que interrompidos. Estes algoritmos são referidos em trabalhos de investiga-ção relacionados, e são utilizados para formação de coligações entre nós coadjuvantes. O modelo proposto colmata as falhas através de técnicas de replicação ativa, tanto virtual como física, com blocos de execução concorrentes. Tenta-se melhorar ou manter a sua qualidade produzida, praticamente sem introduzir overhead de informação significativo no sistema. O modelo certifica-se que as máquinas escolhidas, para as quais os agentes migrarão, melhoram iterativamente os níveis de qualidade de serviço fornecida aos com-ponentes, em função das disponibilidades das respetivas máquinas. Caso a nova configu-ração de qualidade seja rentável para a qualidade geral do serviço, é feito um esforço no sentido de receber novos componentes em detrimento da qualidade dos já hospedados localmente. Os nós que cooperam na coligação maximizam o número de execuções para-lelas entre componentes paralelos que compõem o serviço, com o intuito de reduzir atra-sos de execução. O desenvolvimento desta tese conduziu ao modelo proposto e aos resultados apresenta-dos e foi genuinamente suportado por levantamentos bibliográficos de trabalhos de in-vestigação e desenvolvimento, literaturas e preliminares matemáticos. O trabalho tem também como base uma lista de referências bibliográficas.
Resumo:
IEEE 802.11 is one of the most well-established and widely used standard for wireless LAN. Its Medium Access control (MAC) layer assumes that the devices adhere to the standard’s rules and timers to assure fair access and sharing of the medium. However, wireless cards driver flexibility and configurability make it possible for selfish misbehaving nodes to take advantages over the other well-behaving nodes. The existence of selfish nodes degrades the QoS for the other devices in the network and may increase their energy consumption. In this paper we propose a green solution for selfish misbehavior detection in IEEE 802.11-based wireless networks. The proposed scheme works in two phases: Global phase which detects whether the network contains selfish nodes or not, and Local phase which identifies which node or nodes within the network are selfish. Usually, the network must be frequently examined for selfish nodes during its operation since any node may act selfishly. Our solution is green in the sense that it saves the network resources as it avoids wasting the nodes energy by examining all the individual nodes of being selfish when it is not necessary. The proposed detection algorithm is evaluated using extensive OPNET simulations. The results show that the Global network metric clearly indicates the existence of a selfish node while the Local nodes metric successfully identified the selfish node(s). We also provide mathematical analysis for the selfish misbehaving and derived formulas for the successful channel access probability.