971 resultados para HYDROSTATIC-PRESSURE


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Small-angle X-ray scattering (SAXS) and elastic and quasi-elastic neutron scattering techniques were used to investigate the high-pressure-induced changes on interactions, the low-resolution structure and the dynamics of lysozyme in solution. SAXS data, analysed using a global-fit procedure based on a new approach for hydrated protein form factor description, indicate that lysozyme completely maintains its globular structure up to 1500 bar, but significant modi. cations in the protein-protein interaction potential occur at approximately 600-1000 bar. Moreover, the mass density of the protein hydration water shows a clear discontinuity within this pressure range. Neutron scattering experiments indicate that the global and the local lysozyme dynamics change at a similar threshold pressure. A clear evolution of the internal protein dynamics from diffusing to more localized motions has also been probed. Protein structure and dynamics results have then been discussed in the context of protein-water interface and hydration water dynamics. According to SAXS results, the new configuration of water in the first hydration layer induced by pressure is suggested to be at the origin of the observed local mobility changes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The purpose of this study was to evaluate the influence of intrapulpal pressure and dentin depth on bond strengths of an etch-and-rinse and a self-etching bonding agent to dentin in vitro and in vivo. Twenty-four pairs of premolars were randomly divided into four groups (n = 6) according to the dentin bonding agent, Single Bond and Clearfil SE Bond, and intrapulpal pressure, null or positive. Each tooth of the pair was further designated to be treated in vivo or in vitro. The intrapulpal pressure was controlled in vivo by the delivery of local anesthetics containing or not a vasoconstrictor, while in vitro, it was achieved by keeping the teeth under hydrostatic pressure. Class I cavities were prepared and the dentin bonding agents were applied followed by incremental resin restoration. For the teeth treated in vitro, the same restorative procedures were performed after a 6 month-storage period. Beams with I mm 2 cross-sectional area were prepared and, microtensile tested. Clearfil SE Bond was not influenced by any of the variables of the study, while bond strengths produced in vitro were significatly higher for Single Bond. Overall, lower bond strengths were produced in deep dentin, which reached statistical significance when Single Bond was applied under physiological or simulated intrapulpal pressure. In conclusion, in vitro bonding may overestimate the immediate adhesive performance of more technique-sensitive dentin bonding systems. The impact of intrapulpal pressure on bond strength seems to be more adhesive dependent than dentin morphological characteristics related to depth. (C) 2007 Wiley Periodicals, Inc.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A Raman study of structural changes in the Zr-rich PbZr1-x TixO3 (PZT) system under hydrostatic pressures up to 5.0 GPa is presented. We observe that externally applied pressure induces several phase transitions in PZT ceramics among phases with orthorhombic (Ao), rhombohedral low-temperature (RLT), and rhombohedral high-temperature (RHT) symmetries (all found in PZT at ambient pressure and room temperature). Each of the compositions investigated (0.02 ≤ x ≤ 0.14) exhibits a high-pressure phase with orthorhombic (OI′) symmetry. We further report a detailed study of the pressure dependence of Raman frequencies to elucidate the phase transitions and to provide a set of pressure coefficients for the high-pressure phases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We report on the realization of a capacitive dilatometer, designed for high-resolution measurements of length changes of a material for temperatures 1.4K ≤ T ≤ 300K and hydrostatic pressure P ≤ 250MPa. Helium ( 4He) is used as a pressure-transmitting medium, ensuring hydrostatic-pressure conditions. Special emphasis has been given to guarantee, to a good approximation, constant-pressure conditions during temperature sweeps. The performance of the dilatometer is demonstrated by measurements of the coefficient of thermal expansion at pressures P ≃ 0.1MPa (ambient pressure) and 104MPa on a single crystal of azurite, Cu 3(CO 3) 2(OH) 2, a quasi-one-dimensional spin S = 1/2 Heisenberg antiferromagnet. The results indicate a strong effect of pressure on the magnetic interactions in this system. © 2012 American Institute of Physics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Tolerance to low temperature and high pressure may allow shallow-water species to extend bathymetric range in response to changing climate, but adaptation to contrasting shallow-water environments may affect tolerance to these factors. The brackish shallow-water shrimp Palaemon varians demonstrates remarkable tolerance to elevated hydrostatic pressure and low temperature, but inhabits a highly variable environment: environmental adaptation may therefore make P. varians tolerances unrepresentative of other shallow-water species. Critical thermal maximum (CTmax), critical hydrostatic pressure maximum (CPmax), and acute respiratory response to hydrostatic pressure were assessed in the shallow-water shrimp Palaemon serratus, which inhabits a more stable intertidal habitat. P. serratus’ CTmax was 22.3°C when acclimated at 10°C, and CPmax was 5.9, 10.1, and 14.1 MPa when acclimated at 5, 10, and 15°C respectively: these critical tolerances were consistently lower than P. varians. Respiratory responses to acute hyperbaric exposures similarly indicated lower tolerance to hydrostatic pressure in P. serratus than in P. varians. Contrasting tolerances likely reflect physiological adaptation to differing environments and reveal that the capacity for depth-range extension may vary among species from different habitats.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

By applying high pressure freezing and freeze-substitution, we observed large inclusions of homogeneous appearance in the front of locomoting Walker carcinosarcoma cells that have not been described earlier. Live cell imaging revealed that these inclusions were poor in lipids and nucleic acids but had a high lysine (and hence protein) content. Usually one such structure 2-5 mum in size was present at the front of motile Walker cells, predominantly in the immediate vicinity of newly forming blebs. By correlating the lysine-rich areas in fixed and embedded cells with electron microscopic pictures, inclusions could be assigned to confined, faintly stained cytoplasmic areas that lacked a surrounding membrane; they were therefore called pseudovacuoles. After high-pressure freezing and freeze substitution, pseudovacuoles appeared to be filled with 20 nm large electron-transparent patches surrounded by 12 and 15 nm large particles. The heat shock protein Hsp90 was identified by peptide sequencing as a major fluorescent band on SDS-PAGE of lysine-labelled Walker cell extracts. By immunofluorescence, Hsp90 was found to be enriched in pseudovacuoles. Colocalization of the lysine with a potassium-specific dye in living cells revealed that pseudovacuoles act as K+ stores in the vicinity of forming blebs. We propose that pseudovacuoles might support blebbing by locally regulating the intracellular hydrostatic pressure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Hydrostatic intestinal edema initiates a signal transduction cascade that results in smooth muscle contractile dysfunction. Given the rapid and concurrent alterations in the mechanical properties of edematous intestine observed with the development of edema, we hypothesize that mechanical forces may serve as a stimulus for the activation of certain signaling cascades. We sought to examine whether isolated similar magnitude mechanical forces induced the same signal transduction cascades associated with edema. METHODS: The distal intestine from adult male Sprague Dawley rats was stretched longitudinally for 2 h to 123% its original length, which correlates with the interstitial stress found with edema. We compared wet-to-dry ratios, myeloperoxidase activity, nuclear signal transduction and activator of transcription (STAT)-3 and nuclear factor (NF)-kappa B DNA binding, STAT-3 phosphorylation, myosin light chain phosphorylation, baseline and maximally stimulated intestinal contractile strength, and inducible nitric oxide synthase (iNOS) and sodium hydrogen exchanger 1-3 messenger RNA (mRNA) in stretched and adjacent control segments of intestine. RESULTS: Mechanical stretch did not induce intestinal edema or an increase in myeloperoxidase activity. Nuclear STAT-3 DNA binding, STAT-3 phosphorylation, and nuclear NF-kappa B DNA binding were significantly increased in stretched seromuscular samples. Increased expression of sodium hydrogen exchanger 1 was found but not an increase in iNOS expression. Myosin light chain phosphorylation was significantly decreased in stretched intestine as was baseline and maximally stimulated intestinal contractile strength. CONCLUSION: Intestinal stretch, in the absence of edema/inflammatory/ischemic changes, leads to the activation of signaling pathways known to be altered in intestinal edema. Edema may initiate a mechanotransductive cascade that is responsible for the subsequent activation of various signaling cascades known to induce contractile dysfunction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Evidence of considerable overpressuring of pore fluids in the sediment drilled during Leg 84 was obtained from direct measurement of pressure by two methods. The first involved measurement of back pressure when the annulus of the drill hole became constricted with unremoved drill cuttings or constriction was caused by plastic inflow of the drill hole walls. The second involved measurement of pressure ahead of the bit in conjunction with in situ water samples and heat flow. All measurements indicated abnormally high pore pressure even in slope deposits of the Middle America Trench off Guatemala.

Relevância:

70.00% 70.00%

Publicador:

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The water characteristics in cooked pressure-heat treated (45 degreesC for 45 min prior to pressurisation at 150 MPa for 30 min) and non-pressurised, cooked (control) samples of beef Longissimus aged for 1, 3, 8 or 16 days were studied by nuclear magnetic resonance microscopy. A multi-echo sequence was used to obtain T2 images, and independent of ageing period, the T2 values were found to be lower in pressure-heat treated meat revealing alterations in water characteristics of pressure-treated, cooked meat compared with cooked meat. With increasing ageing duration, the T2 values in both pressure-treated, cooked and cooked meat decreased indicating that the water became more tightly trapped in the protein network. In addition, independent of length of ageing period the relationship between cooking loss in the cooked meat and transverse relaxation differed between non-pressurised and pressure-treated meat. which reveals that the mechanisms changing the water properties in beef during ageing are different from those occuring during pressure-heat treatment of meat. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Field observations of instantaneous water surface slopes in the swash zone are presented. For free-surface flows with a hydrostatic pressure distribution the surface slope is equivalent to the horizontal pressure gradient. Observations were made using a novel technique which in its simplest form consists of a horizontal stringline extending seaward from the beach face. Visual observation, still photography or video photography is then sufficient to determine the surface slope where the free-surface cuts the line or between reference points in the image. The method resolves the mean surface gradient over a cross-shore distance of 5 m or more to within +/- 0.001, or 1/20th -1/100th of typical beach gradients. In addition, at selected points and at any instant in time during the swash cycle, the water surface slope can be determined exactly to be dipping either seaward or landward. Close to the location of bore collapse landward dipping water surface slopes of order 0.05-0.1 occur over a very small region (order 0.5 m) at the blunt or convex leading edge of the swash. In the middle and upper swash the water surface slope at this leading edge is usually very close to horizontal or slightly seaward. Behind the leading edge, the water surface slope was observed to be very close to horizontal or dipping seaward at all times throughout the swash uprush. During the backwash the water surface slope was observed to be always dipping seaward, approaching the beach slope, and remained seaward until a new uprush edge or incident bore passed any particular cross-shore location of interest. The observations strongly Suggest that the swash boundary layer is subject to an adverse pressure gradient during uprush and a favourable pressure gradient during the backwash. Furthermore, assuming Euler's equations are a good approximation in the swash, the observations also show that the total fluid acceleration is negative (offshore) for almost the whole of the uprush and for the entire backwash. The observations are contrary to recent work suggesting significant shoreward directed accelerations and pressure gradients occur in the swash (i.e., delta u/delta t > 0 similar to delta p/delta x < 0), but consistent with analytical and numerical solutions for swash uprush and backwash. The results have important implications for sediment transport modelling in the swash zone.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for in vivo applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel. Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore planarity of the FPs can be correlated to their contrasting photophysical properties at vaious pressures. I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Water and protein dynamics on a nanometer scale were measured by quasi-elastic neutron scattering in the piezophile archaeon Thermococcus barophilus and the closely related pressure-sensitive Thermococcus kodakarensis, at 0.1 and 40 MPa. We show that cells of the pressure sensitive organism exhibit higher intrinsic stability. Both the hydration water dynamics and the fast protein and lipid dynamics are reduced under pressure. In contrast, the proteome of T. barophilus is more pressure sensitive than that of T. kodakarensis. The diffusion coefficient of hydration water is reduced, while the fast protein and lipid dynamics are slightly enhanced with increasing pressure. These findings show that the coupling between hydration water and cellular constituents might not be simply a master-slave relationship. We propose that the high flexibility of the T. barophilus proteome associated with reduced hydration water may be the keys to the molecular adaptation of the cells to high hydrostatic pressure.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluorescent proteins (FPs) are extremely valuable biochemical markers which have found a wide range of applications in cellular and molecular biology research. The monomeric variants of red fluorescent proteins (RFPs), known as mFruits, have been especially valuable for in vivo applications in mammalian cell imaging. Fluorescent proteins consist of a chromophore caged in the beta-barrel protein scaffold. The photophysical properties of an FP is determined by its chromophore structure and its interactions with the protein barrel. Application of hydrostatic pressure on FPs results in the modification of the chromophore environment which allows a systematic study of the role of the protein-chromophore interactions on photophysical properties of FPs. Using Molecular Dynamics (MD) computer simulations, I investigated the pressure induced structural changes in the monomeric variants mCherry, mStrawberry, and Citrine. The results explain the molecular basis for experimentally observed pressure responses among FP variants. It is found that the barrel flexibility, hydrogen bonding interactions and chromophore planarity of the FPs can be correlated to their contrasting photophysical properties at vaious pressures. I also investigated the oxygen diffusion pathways in mOrange and mOrange2 which exhibit marked differences in oxygen sensitivities as well as photostability. Such computational identifications of structural changes and oxygen diffusion pathways are important in guiding mutagenesis efforts to design fluorescent proteins with improved photophysical properties.