988 resultados para HYDRODYNAMICS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-filled portable road safety barriers are a common fixture in road works, however their use of water can be problematic, both in terms of the quantity of water used and the transportation of the water to the installation site. This project aims to develop a new design of portable road safety barrier, which will make novel use of composite and foam materials in order to reduce the barrier’s reliance on water in order to control errant vehicles. The project makes use of finite element (FE) techniques in order to simulate and evaluate design concepts. FE methods and models that have previously been tested and validated will be used in combination in order to provide the most accurate numerical simulations available to drive the project forward. LS-DYNA code is as highly dynamic, non-linear numerical solver which is commonly used in the automotive and road safety industries. Several complex materials and physical interactions are to be simulated throughout the course of the project including aluminium foams, composite laminates and water within the barrier during standardised impact tests. Techniques to be used include FE, smoothed particle hydrodynamics (SPH) and weighted multi-parameter optimisation techniques. A detailed optimisation of several design parameters with specific design goals will be performed with LS-DYNA and LS-OPT, which will require a large number of high accuracy simulations and advanced visualisation techniques. Supercomputing will play a central role in the project, enabling the numerous medium element count simulations necessary in order to determine the optimal design parameters of the barrier to be performed. Supercomputing will also allow the development of useful methods of visualisation results and the production of highly detailed simulations for end-product validation purposes. Efforts thus far have been towards integrating various numerical methods (including FEM, SPH and advanced materials models) together in an efficient and accurate manner. Various designs of joining mechanisms have been developed and are currently being developed into FE models and simulations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Experiments were undertaken to study drying kinetics of different shaped moist food particulates during heat pump assisted fluidised bed drying. Three particular geometrical shapes of parallelepiped, cylindrical and spheres were selected from potatoes (aspect ratio = 1:1, 2:1, 3:1), cut beans (length: diameter = 1:1, 2:1, 3:1) and peas respectively. A batch fluidised bed dryer connected to a heat pump system was used for the experimentation. A Heat pump and fluid bed combination was used to increase overall energy efficiency and achieve higher drying rates. Drying kinetics, were evaluated with non-dimensional moisture at three different drying temperatures of 30, 40 and 50o C. Due to complex hydrodynamics of the fluidised beds, drying kinetics are dryer or material specific. Numerous mathematical models can be used to calculate drying kinetics ranging from analytical models with simplified assumptions to empirical models built by regression using experimental data. Empirical models are commonly used for various food materials due to their simpler approach. However problems in accuracy, limits the applications of empirical models. Some limitations of empirical models could be reduced by using semi-empirical models based on heat and mass transfer of the drying operation. One such method is the quasi-stationary approach. In this study, a modified quasi-stationary approach was used to model drying kinetics of the cylindrical food particles at three drying temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies the practical but challenging problem of motion planning for a deeply submerged rigid body. Here, we formulate the dynamic equations of motion of a submerged rigid body under the architecture of differential geometric mechanics and include external dissipative and potential forces. The mechanical system is represented as a forced affine-connection control system on the configuration space SE(3). Solutions to the motion planning problem are computed by concatenating and reparameterizing the integral curves of decoupling vector fields. We provide an extension to this inverse kinematic method to compensate for external potential forces caused by buoyancy and gravity. We present a mission scenario and implement the theoretically computed control strategy onto a test-bed autonomous underwater vehicle. This scenario emphasizes the use of this motion planning technique in the under-actuated situation; the vehicle loses direct control on one or more degrees of freedom. We include experimental results to illustrate our technique and validate our method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

From Pontryagin’s Maximum Principle to the Duke Kahanamoku Aquatic Complex; we develop the theory and generate implementable time efficient trajectories for a test-bed autonomous underwater vehicle (AUV). This paper is the beginning of the journey from theory to implementation. We begin by considering pure motion trajectories and move into a rectangular trajectory which is a concatenation of pure surge and pure sway. These trajectories are tested using our numerical model and demonstrated by our AUV in the pool. In this paper we demonstrate that the above motions are realizable through our method, and we gain confidence in our numerical model. We conclude that using our current techniques, implementation of time efficient trajectories is likely to succeed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis is concerned with the sloshing motion of water in a moonpool. It is a relatively new problem, that is particularly predominant in moonpools with relatively large dimensions. The problem is further complicated by the additional behaviour of vertical oscillation. It is inevitable that large moonpools will be needed as offshore technology advances, therefore making a problem an important one. The research involves two parts, the theoretical and experimental study. The theoretical study consists of idealising the moonpool to a two dimensional system, represented by two surface piercing parallel barriers at a distance 2a apart. The barriers are forced to undergo roll motion which in turn generates waves. These travelling waves are travelling in opposite directions to each other and have the same amplitude and period, and thus can be expressed in terms of a standing wave. This is mathematically achieved by applying the theory of wavemaking, and therefore the wave amplitude at the side wall can be evaluated at near resonant conditions. The experimental study comprises of comparing the results obtained from the tank and moonpool experiments. The rolling motion creates the sloshing waves in both cases, in addition the vertical oscillation in the moonpool is produced by generating waves at one end of the towing tank. Apart from highlighting influencing parameters, the resonant frequencies obtained from these experiments are then compared with the theoretical values. Experiments in demonstrating the effect of increasing damping with the aid of baffles are also conducted. This is an important aspect which is very necessary if operations in launching and retrieving are to be carried out efficiently and safely.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A computational fluid dynamics (CFD) analysis has been performed for a flat plate photocatalytic reactor using CFD code FLUENT. Under the simulated conditions (Reynolds number, Re around 2650), a detailed time accurate computation shows the different stages of flow evolution and the effects of finite length of the reactor in creating flow instability, which is important to improve the performance of the reactor for storm and wastewater reuse. The efficiency of a photocatalytic reactor for pollutant decontamination depends on reactor hydrodynamics and configurations. This study aims to investigate the role of different parameters on the optimization of the reactor design for its improved performance. In this regard, more modelling and experimental efforts are ongoing to better understand the interplay of the parameters that influence the performance of the flat plate photocatalytic reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Two-stroke outboard boat engines using total loss lubrication deposit a significant proportion of their lubricant and fuel directly into the water. The purpose of this work is to document the velocity and concentration field characteristics of a submerged swirling water jet emanating from a propeller in order to provide information on its fundamental characteristics. The properties of the jet were examined far enough downstream to be relevant to the eventual modelling of the mixing problem. Measurements of the velocity and concentration field were performed in a turbulent jet generated by a model boat propeller (0.02 m diameter) operating at 1500 rpm and 3000 rpm in a weak co-flow of 0.04 m/s. The measurements were carried out in the Zone of Established Flow up to 50 propeller diameters downstream of the propeller, which was placed in a glass-walled flume 0.4 m wide with a free surface depth of 0.15 m. The jet and scalar plume development were compared to that of a classical free round jet. Further, results pertaining to radial distribution, self similarity, standard deviation growth, maximum value decay and integral fluxes of velocity and concentration were presented and fitted with empirical correlations. Furthermore, propeller induced mixing and pollutant source concentration from a two-stroke engine were estimated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study a new immobilized flat plate photocatalytic reactor for wastewater treatment has been investigated using computational fluid dynamics (CFD). The reactor consists of a reactor inlet, a reactive section where the catalyst is coated, and outlet parts. For simulation, the reactive section of the reactor was modelled with an array of baffles. In order to optimize the fluid mixing and reactor design, this study attempts to investigate the influence of baffles with differing heights on the flow field of the flat plate reactor. The results obtained from the simulation of a baffled flat plate reactor hydrodynamics for differing baffle heights for certain positions are presented. Under the conditions simulated, the qualitative flow features, such as the distribution of local stream lines, velocity contours, and high shear region, boundary layers separation, vortex formation, and the underlying mechanism are examined. At low and high Re numbers, the influence of baffle heights on the distribution of species mass fraction of a model pollutant are also highlighted. The simulation of qualitative and quantitative properties of fluid dynamics in a baffled reactor provides valuable insight to fully understand the effect of baffles and their role on the flow pattern, behaviour, and features of wastewater treatment using a photocatalytic reactor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new immobilized flat plate photocatalytic reactor for wastewater treatment has been proposed in this study to avoid subsequent catalyst removal from the treated water. The reactor consists of an inlet, reactive section where catalyst is coated and an outlet parts. In order to optimize the fluid mixing and reactor design, this study aims to investigate the influence of baffles and its arrangement on the flat plate reactor hydrodynamics using computational fluid dynamics (CFD) simulation. For simulation, an array of baffles acting as turbulence promoters is inserted in the reactive zone of the reactor. In this regard, results obtained from the simulation of a baffled- flat plate photoreactor hydrodynamics for different baffle positions, heights and intervals are presented utilizing RNG k-ε turbulence model. Under the conditions simulated, the qualitative flow features, such as the development and separation of boundary layers, vortex formation, the presence of high shear regions and recirculation zones, and the underlying mechanism are examined. The influence of various baffle sizes on the distribution of pollutant concentration is also highlighted. The results presented here indicate that the spanning of recirculation increases the degree of interfacial distortion with a larger interfacial area between fluids which results in substantial enhancement in fluid mixing. The simulation results suggest that the qualitative and quantitative properties of fluid dynamics in a baffled reactor can be obtained which provides valuable insight to fully understand the effect of baffles and its arrangements on the flow pattern, behaviour, and feature.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the ocean science community, researchers have begun employing novel sensor platforms as integral pieces in oceanographic data collection, which have significantly advanced the study and prediction of complex and dynamic ocean phenomena. These innovative tools are able to provide scientists with data at unprecedented spatiotemporal resolutions. This paper focuses on the newly developed Wave Glider platform from Liquid Robotics. This vehicle produces forward motion by harvesting abundant natural energy from ocean waves, and provides a persistent ocean presence for detailed ocean observation. This study is targeted at determining a kinematic model for offline planning that provides an accurate estimation of the vehicle speed for a desired heading and set of environmental parameters. Given the significant wave height, ocean surface and subsurface currents, wind speed and direction, we present the formulation of a system identification to provide the vehicle’s speed over a range of possible directions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A coupled SPH-DEM based two-dimensional (2-D) micro-scale single cell model is developed to predict basic cell-level shrinkage effects of apple parenchyma cells during air drying. In this newly developed drying model, Smoothed Particle Hydrodynamics (SPH) is used to model the low Reynolds Number fluid motions of the cell protoplasm, and a Discrete Element Method (DEM) is employed to simulate the polymer-like cell wall. Simulations results reasonably agree with published experimental drying results on cellular shrinkage properties such as cellular area, diameter and perimeter. These preliminary results indicate that the model is effective for the modelling and simulation of apple parenchyma cells during air drying.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper is concerned with applying a particle-based approach to simulate the micro-level cellular structural changes of plant cells during drying. The objective of the investigation was to relate the micro-level structural properties such as cell area, diameter and perimeter to the change of moisture content of the cell. Model assumes a simplified cell which consists of two basic components, cell wall and cell fluid. The cell fluid is assumed to be a Newtonian fluid with higher viscosity compared to water and cell wall is assumed to be a visco-elastic solid boundary located around the cell fluid. Cell fluid is modelled with Smoothed Particle Hydrodynamics (SPH) technique and for the cell wall; a Discrete Element Method (DEM) is used. The developed model is two-dimensional, but accounts for three-dimensional physical properties of real plant cells. Drying phenomena is simulated as fluid mass reductions and the model is used to predict the above mentioned structural properties as a function of cell fluid mass. Model predictions are found to be in fairly good agreement with experimental data in literature and the particle-based approach is demonstrated to be suitable for numerical studies of drying related structural deformations. Also a sensitivity analysis is included to demonstrate the influence of key model parameters to model predictions.