960 resultados para HUMAN-BLOOD


Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Cryopreserved human blood vessels are important tools in reconstructive surgery. However, patency of frozen/thawed conduits depends largely on the freezing/thawing procedures employed. METHODS: Changes in tone were recorded on rings from human saphenous vein (SV) and used to quantify the degree of cryoinjury after different periods of exposure at room temperature to the cryomedium (Krebs-Henseleit solution containing 1.8M dimethyl sulfoxide and 0.1M sucrose) and after different cooling speeds and thawing rates following storage at -196 degrees C. RESULTS: Without freezing, exposure of SV to the cryomedium for up to 240 min did not modify contractile responses to noradrenaline (NA). Pre-freezing exposure to the cryomedium for 10-120 min attenuated significantly post-thaw maximal contractile responses to NA, endothelin-1 (ET-1) and potassium chloride (KCl) by 30-44%. Exposure for 240 min attenuated post-thaw contractile responses to all tested agents markedly by 62-67%. Optimal post-thaw contractile activity was obtained with SV frozen at about -1.2 degrees C/min and thawed slowly at about 15 degrees C/min. In these SV maximal contractile responses to NA, ET-1 and KCl amounted to 66%, 70% and 60% of that produced by unfrozen controls. Following cryostorage of veins for up to 10 years the responsiveness of vascular smooth muscle to NA was well maintained. CONCLUSION: Cryopreservation allows long-term banking of viable human SV with only minor loss in contractility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Xenoreactive human natural antibodies (NAb) are predominantly directed against galactose-alpha(1,3)galactose (Gal). Binding of immunoglobulin (Ig) G and IgM NAb activates porcine endothelial cells (pEC) and triggers complement lysis responsible for hyperacute xenograft rejection. In vitro, IgG NAb induce human natural killer (NK) cell-mediated lysis of pEC by antibody-dependent cell-mediated cytotoxicity (ADCC). The present study examined the levels of anti-porcine NAb in a large number of individuals and addressed the functional role of non-Gal anti-porcine NAb. METHODS: Sera from 120 healthy human blood donors were analyzed for the presence of anti-porcine NAb by flow cytometry using porcine red blood cells (pRBC), lymphoblastoid cells (pLCL), and pEC derived from control or Gal-deficient pigs. Xenogeneic complement lysis was measured by flow cytometry using human serum and rabbit complement. ADCC was analyzed by chromium-release assays using human serum and freshly isolated NK cells. RESULTS: Human IgM binding to pRBC was found in 93% and IgG binding in 86% of all samples. Non-Gal NAb comprised 13% of total IgM and 36% of total IgG binding to pEC. NAb/complement-induced lysis and ADCC of Gal-deficient compared to Gal-positive pEC were 21% and 29%, respectively. The majority of anti-Gal and non-Gal IgG NAb were of the IgG2 subclass. CONCLUSIONS: The generation of Gal-deficient pigs has overcome hyperacute anti-Gal-mediated xenograft rejection in nonhuman primates. Non-Gal anti-porcine NAb represent a potentially relevant immunological hurdle in a subgroup of individuals by inducing endothelial damage in xenografts.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Natural IgM containing anti-Gal antibodies initiates classic pathway complement activation in xenotransplantation. However, in ischemia-reperfusion injury, IgM also induces lectin pathway activation. The present study was therefore focused on lectin pathway as well as interaction of IgM and mannose-binding lectin (MBL) in pig-to-human xenotransplantation models. METHODS Activation of the different complement pathways was assessed by cell enzyme-linked immunosorbent assay using human serum on wild-type (WT) and α-galactosyl transferase knockout (GalTKO)/hCD46-transgenic porcine aortic endothelial cells (PAEC). Colocalization of MBL/MASP2 with IgM, C3b/c, C4b/c, and C6 was investigated by immunofluorescence in vitro on PAEC and ex vivo in pig leg xenoperfusion with human blood. Influence of IgM on MBL binding to PAEC was tested using IgM depleted/repleted and anti-Gal immunoabsorbed serum. RESULTS Activation of all the three complement pathways was observed in vitro as indicated by IgM, C1q, MBL, and factor Bb deposition on WT PAEC. MBL deposition colocalized with MASP2 (Manders' coefficient [3D] r=0.93), C3b/c (r=0.84), C4b/c (r=0.86), and C6 (r=0.80). IgM colocalized with MBL (r=0.87) and MASP2 (r=0.83). Human IgM led to dose-dependently increased deposition of MBL, C3b/c, and C6 on WT PAEC. Colocalization of MBL with IgM (Pearson's coefficient [2D] rp=0.88), C3b/c (rp=0.82), C4b/c (rp=0.63), and C6 (rp=0.81) was also seen in ex vivo xenoperfusion. Significantly reduced MBL deposition and complement activation was observed on GalTKO/hCD46-PAEC. CONCLUSION Colocalization of MBL/MASP2 with IgM and complement suggests that the lectin pathway is activated by human anti-Gal IgM and may play a pathophysiologic role in pig-to-human xenotransplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has previously been published that interferon-α (type I IFN) improves clinical symptoms of asthma patients. Since human basophils are major inflammatory cells in maintaining chronic allergic asthma we investigate whether type I IFN affect human blood basophils. Furthermore, previous studies have shown that spontaneous apoptosis of human basophils is slow due to constitutive expression of anti-apoptotic BCL-2 family members. In addition, IL-3 exceptionally promotes survival of basophils by enhancing constitutive expression of BCL-2 family members and by inducing de-novo expression of Pim-1 kinase. Thus, we also assessed whether type I IFN might overcome IL-3-induced survival of human basophils. Our data show that type I IFN enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or type II IFN treated cells. Furthermore, we demonstrate that both type I IFN and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. Analyses of signaling pathways reveal that type I IFN promote prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of type I IFN is abolished. On the other hand, type I IFN do not reduce IL-3-induced de novo expression of Pim-1 and BCL-2. This is in line with our observation that IL-3-induced survival is dominant over type I IFN-enhanced apoptosis. In addition, phosphorylation of p38 MAPK in type I IFN treated cells is comparable to non-treated cells. Particularly however, inhibition of this p-p38 activity abrogates apoptosis as well. We conclude that type I IFN-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38 MAPK pathways. Our study identifies a so far unknown effect of type I IFN and may explain the improved clinical symptoms of asthma patients treated with type I IFN.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Human basophils are major inflammatory cells in maintaining chronic allergic asthma. It has been published that interferon-α (IFN-α) improves clinical symptoms of asthma patients. In contrast, IL-3 exacerbates airway inflammation by inducing IL-4, IL-8 and IL-13 secretion from human basophils thus regulating their immunoregulatory functions. Furthermore, IL-3 exceptionally promotes survival of basophils. Here, we assessed cellular response of human basophils treated with IFN-α alone or in combination with IL-3. Our data show that IFN-α enhances apoptosis in purified human blood basophils compared to spontaneous apoptosis of controls or IFN-γ treated cells. Furthermore, we demonstrate that both IFN-α and FasL enhance apoptosis in human basophils with similar efficiency in a rather additive than synergistic way. IFN-α inhibits IL-3-induced survival to a minor degree. Particularly however, it suppresses IL-3-induced de-novo production of IL-8 and IL-13 up to 80%. In contrast, the production of IL-4 is not affected. Analyses of signaling pathways reveal that IFN-α promotes prolonged phosphorylation of STAT1/STAT2. By using a pan-JAK inhibitor the phosphorylation of STAT1/STAT2 is inhibited and most importantly the pro-apoptotic effect of IFN-α is abolished. Although the phosphorylation of p38-MAPK in IFN-α-treated cells is comparable to non-treated cells, inhibition of p-p38 activity abrogates IFN-α-enhanced apoptosis as well. We conclude that IFN-α-enhanced apoptosis is tightly regulated by the cooperation of JAK/STAT and p38-MAPK pathways. Our study identifies IFN-α as a novel inhibitor of IL-3-induced IL-8 and IL-13 production of human basophils. Taken together our study may explain the improved clinical symptoms of asthma patients treated with IFN-α.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

OBJECTIVES: To detect the influence of blood contamination (BC) on the bond strength (BS) of a self-etching bonding system (SES) to enamel and dentine. METHODS: 25 human molars were longitudinally sectioned on the mesio-distal axis in order to obtain 50 specimens, which were embedded in acrylic resin. At first, the specimens were ground to expose a flat surface of enamel, and a bond strength test was performed. Afterwards, the samples were ground again in order to obtain a flat surface of dentine. Ten groups (total: n=100) were assigned according to substrate (enamel and dentine), step in the bonding sequence when contamination occurred (before the acidic primer and after the bonding resin), and contamination treatment (dry or rinse and dry procedure). Fresh human blood was introduced either before or after SES application (Clearfil SE Bond) and treated with air drying, or by rinsing and drying following application. Composite resin (Filtek Z-250,3M ESPE) was applied as inverted, truncated cured cones that were debonded in tension. RESULTS: The mean tensile BS values (MPa) for enamel/dentine were 19.4/23.0 and 17.1/10.0 for rinse-and-dry treatment (contamination before and after SES, respectively); while the measurements for the dry treatment, 16.2/23.3 and 0.0/0.0 contamination before and after SES, respectively. CONCLUSIONS: It was determined that blood contamination impaired adhesion to enamel and dentine when it occurred after bond light curing. Among the tested contamination treatments, the rinse-and-dry treatment produced the highest bond strength with BC after SES application, but it was not sufficient to recover the BS in the contamination-free group.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Delta-9-tetrahydrocannabinolic acid A (THCA-A) is the biosynthetic precursor of delta-9-tetrahydrocannabinol (THC) in cannabis plants, and has no psychotropic effects. THCA-A can be detected in blood and urine, and several metabolites have been identified. THCA-A was also shown to be incorporated in hair by side stream smoke to a minor extent, but incorporation via blood stream or sweat seems unlikely. The detection of THCA-A in biological fluids may serve as a marker for differentiating between the intake of prescribed THC medication – containing only pure THC – and cannabis products containing THC besides THC-acid A and other cannabinoids. However, the knowledge about its usefulness in forensic cases is very limited. The aim of the present work was the development of a reliable method for THCA-A determination in human blood or plasma using LC–MS/MS and application to cases of driving under the influence of drugs. Fifty eight (58) authentic whole blood and the respective plasma samples were collected from drivers suspected of driving under the influence of cannabis from the region of Bern (Switzerland). Samples were first tested for THC, 11-OH-THC and THC-COOH, and then additionally for THCA-A. For this purpose, the existing LC–MS/MS method was modified and validated, and found to be selective and linear over a range of 1.0 to 200 ng/mL (the correlation coefficients were above 0.9980 in all validation runs). Limit of detection (LOD) and limit of quantification (LOQ) were 0.3 ng/mL and 1.0 ng/mL respectively. Intra- and inter-assay accuracy were equal or better than 90% and intra- and inter-assay precision were equal or better than 11.1%. The mean extraction efficiencies were satisfactory being equal or higher than 85.4%. THCA-A was stable in whole blood samples after 3 freeze/thaw cycles and storage at 4 °C for 7 days. Re-injection (autosampler) stability was also satisfactory. THC was present in all blood samples with levels ranging from 0.7 to 51 ng/mL. THCA-A concentrations ranged from 1.0 to 496 ng/mL in blood samples and from 1.4 to 824 ng/mL in plasma samples. The plasma:blood partition coefficient had a mean value of 1.7 (±0.21, SD). No correlation was found between the degree of intoxication or impairment stated in the police protocols or reports of medical examinations and the detected THCA-A-concentration in blood.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

T helper type 9 (TH9) cells can mediate tumor immunity and participate in autoimmune and allergic inflammation in mice, but little is known about the TH9 cells that develop in vivo in humans. We isolated T cells from human blood and tissues and found that most memory TH9 cells were skin-tropic or skin-resident. Human TH9 cells coexpressed tumor necrosis factor-α and granzyme B and lacked coproduction of TH1/TH2/TH17 cytokines, and many were specific for Candida albicans. Interleukin-9 (IL-9) production was transient and preceded the up-regulation of other inflammatory cytokines. Blocking studies demonstrated that IL-9 was required for maximal production of interferon-γ, IL-9, IL-13, and IL-17 by skin-tropic T cells. IL-9-producing T cells were increased in the skin lesions of psoriasis, suggesting that these cells may contribute to human inflammatory skin disease. Our results indicate that human TH9 cells are a discrete T cell subset, many are tropic for the skin, and although they may function normally to protect against extracellular pathogens, aberrant activation of these cells may contribute to inflammatory diseases of the skin.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Asialoglycoprotein receptor-1 (ASGR1) mediates capture and phagocytosis of platelets in pig-to-primate liver xenotransplantation. However, thrombocytopenia is also observed in xenotransplantation or xenoperfusion of other porcine organs than liver. We therefore assessed ASGR1 expression as well as ASGR1-mediated xenogeneic platelet phagocytosis in vitro and ex vivo on porcine aortic, femoral arterial, and liver sinusoidal endothelial cells (PAEC/PFAEC/PLSEC). METHODS Porcine forelimbs were perfused with whole, heparinized human or autologous pig blood. Platelets were counted at regular intervals. Pig limb muscle and liver, as well as PAEC/PFAEC/PLSEC, were characterized for ASGR1 expression. In vitro, PAEC cultured on microcarrier beads and incubated with non-anticoagulated human blood were used to study binding of human platelets and platelet-white blood cell aggregation. Carboxyfluorescein diacetate succinimidyl ester-labeled human platelets were exposed to PAEC/PFAEC/PLSEC and analyzed for ASGR1-mediated phagocytosis. RESULTS Human platelet numbers decreased from 102 ± 33 at beginning to 13 ± 6 × 10/μL (P < 0.0001) after 10 minutes of perfusion, whereas no significant decrease of platelets was seen during autologous perfusions (171 ± 26 to 122 ± 95 × 10/μL). The PAEC, PFAEC, and PLSEC all showed similar ASGR1 expression. In vitro, no correlation was found between reduction in platelet count and platelet-white blood cell aggregation. Phagocytosis of human carboxyfluorescein diacetate succinimidyl ester-labeled platelets by PAEC/PFAEC/PLSEC peaked at 15 minutes and was inhibited (P < 0.05 to P < 0.0001) by rabbit anti-ASGR1 antibody and asialofetuin. CONCLUSIONS The ASGR1 expressed on aortic and limb arterial pig vascular endothelium plays a role in binding and phagocytosis of human platelets. Therefore, ASGR1 may represent a novel therapeutic target to overcome thrombocytopenia associated with vascularized pig-to-primate xenotransplantation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND Dysregulation of the coagulation system due to inflammatory responses and cross-species molecular incompatibilities represents a major obstacle to successful xenotransplantation. We hypothesized that complement inhibition mediated by transgenic expression of human CD46 in pigs might also regulate the coagulation and fibrinolysis cascades and tested this in ex vivo human-to-pig xenoperfusions. METHODS Forelimbs of wild-type and hCD46/HLA-E double transgenic pigs were ex vivo xenoperfused for 12 hours with whole heparinized human blood. Muscle biopsies were stained for galactose-α1,3-galactose, immunoglobulin M, immunoglobulin G, complement, fibrin, tissue factor, fibrinogen-like protein 2, tissue plasminogen activator (tPA), and plasminogen activator inhibitor (PAI)-1. The PAI-1/tPA complexes, D-dimers, and prothrombin fragment F1 + 2 were measured in plasma samples after ex vivo xenoperfusion. RESULTS No differences of galactose expression or deposition of immunoglobulin M and immunoglobulin G were found in xenoperfused tissues of wild type and transgenic limbs. In contrast, significantly lower deposition of C5b-9 (P < 0.0001), fibrin (P = 0.009), and diminished expression of tissue factor (P = 0.005) and fibrinogen-like protein 2 (P = 0.028) were found in xenoperfused tissues of transgenic limbs. Levels of prothrombin fragment F1 + 2 (P = 0.031) and D-dimers (P = 0.044) were significantly lower in plasma samples obtained from transgenic as compared to wild-type pig limb perfusions. The expression of the fibrinolytic marker tPA was significantly higher (P = 0.009), whereas PAI-1 expression (P = 0.022) and PAI-1/tPA complexes in plasma (P = 0.015) were lower after transgenic xenoperfusion as compared to wild-type xenoperfusions. CONCLUSIONS In this human-to-pig xenoperfusion model, complement inhibition by transgenic hCD46 expression led to a significant inhibition of procoagulant and antifibrinolytic pathways.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This MPH thesis consists of (1) literature review of the relatively new synthetic persistent organic pollutants (POP), polybrominated diphenyl ethers (PBDEs), a type of flame retardant posing a potential public health hazard, (2) Presentation of data on PBDE levels in dryer lint from Dallas, TX and Hamburg, Germany. ^ PBDEs are used as additive fire retardants in plastics, polyurethane foam and electronic equipment to reduce flammability and thus save life and property. PBDEs have been widely used beginning in the 1970s. They resemble polychlorinated biphenyls (PCBs) in structure and toxicity. PBDEs are found in environmental sediments, sludges, and wildlife and even in human blood, milk and tissues. ^ PBDEs, due to their lipophilicity, accumulate in fat and other tissues and biomagnify up the food chain, with increasing concentrations. Animal studies have suggested potential health effects including thyroid disruption, permanent learning and memory impairment, fetal malformations, developmental neurotoxicity and, at high doses, possibly cancer. ^ PBDE levels are increasing in blood and breast milk in North America, but PBDEs intake unlike PCBs appears to be not primarily through food; food PBDE levels in the U.S. are not markedly higher than in Europe yet U.S. human blood and milk levels are much higher. For this reason various exposure pathways including PBDE contaminated dust and air have been studied to better characterize routes of PBDE intake into humans. ^ The scientific literature on PBDE levels in household dust reports higher PBDE concentration in dust than that found in dryer lint; levels in the U.S are elevated compared to other countries with congeners such as BDE 47, 99, 100 and 209 predominating. The United Kingdom has elevated BDE 209 due to high usage of Deca commercial mixture. These studies suggest that indoor PBDE contamination through household dust could be a potential source of PBDE exposure and body burden especially in young children. ^ PBDE levels in dryer lint from U.S ranged from 321 to 3073 ng/g (Mean: 1138 ng/g, Median: 803 ng/g) and from Germany were from 330 to 2069 ng/g (Median: 71ng/g, Mean: 361 ng/g). High median levels in U.S samples indicate contamination of lint with PBDEs although the source of the PBDEs in lint may be from dryer electrical components or air deposition onto clothes, lint may be one source of PBDE exposure to humans. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fourier transform-infrared/statistics models demonstrate that the malignant transformation of morphologically normal human ovarian and breast tissues involves the creation of a high degree of structural modification (disorder) in DNA, before restoration of order in distant metastases. Order–disorder transitions were revealed by methods including principal components analysis of infrared spectra in which DNA samples were represented by points in two-dimensional space. Differences between the geometric sizes of clusters of points and between their locations revealed the magnitude of the order–disorder transitions. Infrared spectra provided evidence for the types of structural changes involved. Normal ovarian DNAs formed a tight cluster comparable to that of normal human blood leukocytes. The DNAs of ovarian primary carcinomas, including those that had given rise to metastases, had a high degree of disorder, whereas the DNAs of distant metastases from ovarian carcinomas were relatively ordered. However, the spectra of the metastases were more diverse than those of normal ovarian DNAs in regions assigned to base vibrations, implying increased genetic changes. DNAs of normal female breasts were substantially disordered (e.g., compared with the human blood leukocytes) as were those of the primary carcinomas, whether or not they had metastasized. The DNAs of distant breast cancer metastases were relatively ordered. These findings evoke a unified theory of carcinogenesis in which the creation of disorder in the DNA structure is an obligatory process followed by the selection of ordered, mutated DNA forms that ultimately give rise to metastases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Arterial thrombosis is considered to arise from the interaction of tissue factor (TF) in the vascular wall with platelets and coagulation factors in circulating blood. According to this paradigm, coagulation is initiated after a vessel is damaged and blood is exposed to vessel-wall TF. We have examined thrombus formation on pig arterial media (which contains no stainable TF) and on collagen-coated glass slides (which are devoid of TF) exposed to flowing native human blood. In both systems the thrombi that formed during a 5-min perfusion stained intensely for TF, much of which was not associated with cells. Antibodies against TF caused ≈70% reduction in the amount of thrombus formed on the pig arterial media and also reduced thrombi on the collagen-coated glass slides. TF deposited on the slides was active, as there was abundant fibrin in the thrombi. Factor VIIai, a potent inhibitor of TF, essentially abolished fibrin production and markedly reduced the mass of the thrombi. Immunoelectron microscopy revealed TF-positive membrane vesicles that we frequently observed in large clusters near the surface of platelets. TF, measured by factor Xa formation, was extracted from whole blood and plasma of healthy subjects. By using immunostaining, TF-containing neutrophils and monocytes were identified in peripheral blood; our data raise the possibility that leukocytes are the main source of blood TF. We suggest that blood-borne TF is inherently thrombogenic and may be involved in thrombus propagation at the site of vascular injury.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Substance P (SP) is a potent modulator of neuroimmunoregulation. We recently reported that human immune cells express SP and its receptor. We have now investigated the possible role that SP and its receptor plays in HIV infection of human mononuclear phagocytes. SP enhanced HIV replication in human blood-isolated mononuclear phagocytes, whereas the nonpeptide SP antagonist (CP-96,345) potently inhibited HIV infectivity of these cells in a concentration-dependent fashion. CP-96,345 prevented the formation of typical giant syncytia induced by HIV Bal strain replication in these cells. This inhibitory effect of CP-96,345 was because of the antagonism of neurokinin-1 receptor, a primary SP receptor. Both CP-96,345 and anti-SP antibody inhibited SP-enhanced HIV replication in monocyte-derived macrophages (MDM). Among HIV strains tested (both prototype and primary isolates), only the R5 strains (Bal, ADA, BL-6, and CSF-6) that use the CCR5 coreceptor for entry into MDM were significantly inhibited by CP-96,345; in contrast, the X4 strain (UG024), which uses CXCR4 as its coreceptor, was not inhibited. In addition, the M-tropic ADA (CCR5-dependent)-pseudotyped HIV infection of MDM was markedly inhibited by CP-96,345, whereas murine leukemia virus-pseudotyped HIV was not affected, indicating that the major effect of CP-96,345 is regulated by Env-determined early events in HIV infection of MDM. CP-96,345 significantly down-regulated CCR5 expression in MDM at both protein and mRNA levels. Thus, SP–neurokinin-1 receptor interaction may play an important role in the regulation of CCR5 expression in MDM, affecting the R5 HIV strain infection of MDM.