813 resultados para HT furnace energy management
Resumo:
Three-dimensional wagon train models have been developed for the crashworthiness analysis using multi-body dynamics approach. The contributions of the train size (number of wagon) to the frontal crash forces can be identified through the simulations. The effects of crash energy management (CEM) design and crash speed on train crashworthiness are examined. The CEM design can significantly improve the train crashworthiness and the consequential vehicle stability performance - reducing derailment risks.
Resumo:
Poor mine water management can lead to corporate, environmental and social risks. These risks become more pronounced as mining operations move into areas of water scarcity and/or increase climatic variability while also managing increased demand, lower ore grades and increased strip ratios. Therefore, it is vital that mine sites better understand these risks in order to implement management practices to address them. Systems models provide an effective approach to understand complex networks, particularly across multiple scales. Previous work has represented mine water interactions using systems model on a mine site scale. Here, we expand on that work by present an integrated tool that uses a systems modeling approach to represent mine water interactions on a site and regional scale and then analyses the risks associated with events stemming from those interactions. A case study is presented to represent three indicative corporate, environmental and social risks associated with a mine site that exists in a water scarce region. The tool is generic and flexible, and can be used in many scenarios to provide significant potential utility to the mining industry.
Resumo:
This thesis introduces advanced Demand Response algorithms for residential appliances to provide benefits for both utility and customers. The algorithms are engaged in scheduling appliances appropriately in a critical peak day to alleviate network peak, adverse voltage conditions and wholesale price spikes also reducing the cost of residential energy consumption. Initially, a demand response technique via customer reward is proposed, where the utility controls appliances to achieve network improvement. Then, an improved real-time pricing scheme is introduced and customers are supported by energy management schedulers to actively participate in it. Finally, the demand response algorithm is improved to provide frequency regulation services.
Resumo:
Control centers (CC) play a very important role in power system operation. An overall view of the system with information about all existing resources and needs is implemented through SCADA (Supervisory control and data acquisition system) and an EMS (energy management system). As advanced technologies have made their way into the utility environment, the operators are flooded with huge amount of data. The last decade has seen extensive applications of AI techniques, knowledge-based systems, Artificial Neural Networks in this area. This paper focuses on the need for development of an intelligent decision support system to assist the operator in making proper decisions. The requirements for realization of such a system are recognized for the effective operation and energy management of the southern grid in India The application of Petri nets leading to decision support system has been illustrated considering 24 bus system that is a part of southern grid.
Resumo:
Considering voltage stability as a static viability problem, this paper takes a particular concern of Q-V characteristics and reflects on certain notions that do not seem to have been explicitly mentioned or derived in the existing documented literature. The equations of Q-V characteristics are rederived in exactness, some salient points on the curve are discovered and analysed. The results of the analysis are illustrated through a case study
Resumo:
This paper presents an artificial feed forward neural network (FFNN) approach for the assessment of power system voltage stability. A novel approach based on the input-output relation between real and reactive power, as well as voltage vectors for generators and load buses is used to train the neural net (NN). The input properties of the feed forward network are generated from offline training data with various simulated loading conditions using a conventional voltage stability algorithm based on the L-index. The neural network is trained for the L-index output as the target vector for each of the system loads. Two separate trained NN, corresponding to normal loading and contingency, are investigated on the 367 node practical power system network. The performance of the trained artificial neural network (ANN) is also investigated on the system under various voltage stability assessment conditions. As compared to the computationally intensive benchmark conventional software, near accurate results in the value of L-index and thus the voltage profile were obtained. Proposed algorithm is fast, robust and accurate and can be used online for predicting the L-indices of all the power system buses. The proposed ANN approach is also shown to be effective and computationally feasible in voltage stability assessment as well as potential enhancements within an overall energy management system in order to determining local and global stability indices
Resumo:
提出一种针对小能量亚轨道飞行器在无动力返回末端区域的多参数耦合、能量航向分离控制、动势能匹配衰减的精确控制的末端能量管理方法.以动能、势能作为约束条件,以航程作为优化指标,采用能量控制方法实时生成能量剖面,根据飞行器名义能量/航程在能量剖面中的位置确定迎角,最终生成三个姿态角.仿真结果表明用这种方法得到了良好的制导结果.
Resumo:
The dissertation studies the general area of complex networked systems that consist of interconnected and active heterogeneous components and usually operate in uncertain environments and with incomplete information. Problems associated with those systems are typically large-scale and computationally intractable, yet they are also very well-structured and have features that can be exploited by appropriate modeling and computational methods. The goal of this thesis is to develop foundational theories and tools to exploit those structures that can lead to computationally-efficient and distributed solutions, and apply them to improve systems operations and architecture.
Specifically, the thesis focuses on two concrete areas. The first one is to design distributed rules to manage distributed energy resources in the power network. The power network is undergoing a fundamental transformation. The future smart grid, especially on the distribution system, will be a large-scale network of distributed energy resources (DERs), each introducing random and rapid fluctuations in power supply, demand, voltage and frequency. These DERs provide a tremendous opportunity for sustainability, efficiency, and power reliability. However, there are daunting technical challenges in managing these DERs and optimizing their operation. The focus of this dissertation is to develop scalable, distributed, and real-time control and optimization to achieve system-wide efficiency, reliability, and robustness for the future power grid. In particular, we will present how to explore the power network structure to design efficient and distributed market and algorithms for the energy management. We will also show how to connect the algorithms with physical dynamics and existing control mechanisms for real-time control in power networks.
The second focus is to develop distributed optimization rules for general multi-agent engineering systems. A central goal in multiagent systems is to design local control laws for the individual agents to ensure that the emergent global behavior is desirable with respect to the given system level objective. Ideally, a system designer seeks to satisfy this goal while conditioning each agent’s control on the least amount of information possible. Our work focused on achieving this goal using the framework of game theory. In particular, we derived a systematic methodology for designing local agent objective functions that guarantees (i) an equivalence between the resulting game-theoretic equilibria and the system level design objective and (ii) that the resulting game possesses an inherent structure that can be exploited for distributed learning, e.g., potential games. The control design can then be completed by applying any distributed learning algorithm that guarantees convergence to the game-theoretic equilibrium. One main advantage of this game theoretic approach is that it provides a hierarchical decomposition between the decomposition of the systemic objective (game design) and the specific local decision rules (distributed learning algorithms). This decomposition provides the system designer with tremendous flexibility to meet the design objectives and constraints inherent in a broad class of multiagent systems. Furthermore, in many settings the resulting controllers will be inherently robust to a host of uncertainties including asynchronous clock rates, delays in information, and component failures.
Resumo:
[ES]Este trabajo de fin de grado (TFG) pretende analizar la evolución de la demanda en el sistema eléctrico peninsular y la potencia disponible para decidir si, en el medio plazo, será necesario incorporar nueva potencia o prescindir de alguna de las centrales existentes. El estudio considerará tanto fuentes de energía renovables como no renovables, centrándose en la necesidad, o no, de incorporar nueva potencia eólica. El TFG considerará los siguientes aspectos: el contexto energético de la península española, el análisis de la situación actual y previsiones. Este TFG responde a la necesidad de realizar una buena gestión energética con el objetivo reducir las emisiones de CO2 mejorando el uso de la energía eólica y optimizando el mix energético.
Resumo:
Interest in development of offshore renewable energy facilities has led to a need for high-quality, statistically robust information on marine wildlife distributions. A practical approach is described to estimate the amount of sampling effort required to have sufficient statistical power to identify species specific “hotspots” and “coldspots” of marine bird abundance and occurrence in an offshore environment divided into discrete spatial units (e.g., lease blocks), where “hotspots” and “coldspots” are defined relative to a reference (e.g., regional) mean abundance and/or occurrence probability for each species of interest. For example, a location with average abundance or occurrence that is three times larger the mean (3x effect size) could be defined as a “hotspot,” and a location that is three times smaller than the mean (1/3x effect size) as a “coldspot.” The choice of the effect size used to define hot and coldspots will generally depend on a combination of ecological and regulatory considerations. A method is also developed for testing the statistical significance of possible hotspots and coldspots. Both methods are illustrated with historical seabird survey data from the USGS Avian Compendium Database.
Resumo:
The purpose of this project is to model seabird flock size data to provide recommendations to the Bureau of Ocean and Energy Management for offshore wind turbine placement. Our hypothesis is that ecological characteristics influence which statistical distribution will provide the best fit to seabird flock size data. To test this, seabird species can be grouped based on shared ecological traits, such as foraging mechanism or diet.