1000 resultados para HOMOLEPTIC LANTHANIDE COMPLEXES


Relevância:

40.00% 40.00%

Publicador:

Resumo:

New complexes of Lanthanide nitrates with N-(4-methyl-2-pyridyl)-acetamide (4-me-aapH) of the general formulae. [Ln(4-me-aapH)2] [NO3] (where Ln=La=La-Yb and Y)have been synthesized and haracterised by chemical analysis, molar conductivity and physical methods such as infrared, 13C NMR an electronic spectra in the visible region. Molar conductance and infrared data point to the presence to the coordinated nitrates groups. Infrared and 13C NMR data have been interpreted in terms of the coordination of the legand to the metal ion through the oxygen of the secondary amide and nitrogen of the hetrocyclic ring, in a bidentate fashion. Coordination number of ten seems probable for the complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complexes of lanthanide perchlorates with the ligand N,N,N,N-tetra-methyl-3,6,9-trioxaundecane diamide (TUD) of the composition Ln(TUD)2-(ClO4)3 (Ln triple bond; length as m-dash La, Nd, Ho, Er, Y) were isolated. Electrical conductivity values indicate that all the perchlorate groups are ionic. IR and nuclear magnetic resonance (1H and 13C) data prove that the ligand coordinates to the metal via the three ether oxygens and the two carbonyl oxygens. A probable coordination number of ten can be assigned for all the complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Novel complexes of lanthanide perchlorates with 4-nitroquinoline-1-oxide (NQNO) and 5-nitroisoquinoline-2-oxide (NIQNO) have been prepared and characterized. The complexes have the general formulaeLn(NQNO)8(ClO4)3 (whereLn=La-Nd), Ln(NQNO)7(ClO4)3 (whereLn=Gd-Yb),Ln(NIQNO)9(ClO4)3 (whereLn=La-Nd), andLn(NIQNO)7(ClO4)3 (whereLn=Gd-Yb). The IR, proton NMR spectral data indicate the coordination of the N—O group of the ligands to he lanthanide ions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New complexes of lanthanide nitrates with 2-N-(6-picolyl)-benzamide of the formulae Ln2[6-pic-BA], [NO3l6 (Ln = Y and La-Yb) have been prepared and characterised by chemical analysis, infrared, molar conductance and electronic spectral data. Molar conductance data along with IR data point to the presence of co-ordinated nitrate groups. IR spectra prove the bidentate co-ordination of the ligand to the metal ion, through the oxygen of the secondary amide and the nitrogen of the heterocyclic ring. Electronic spectral studies in the visible region suggest an eight co-ordinate geometry around the metal ions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New complexes of lanthanide perchlorates with 2-N-(pyridyl) benzamide (PyBA) of the type Ln(PyBA)3(ClO4)3 where Ln = Y and La---Yb have been synthesised and characterised by analyses, conductance, IR, 13C NMR (for diamagnetic complexes only) and electronic spectra. The molar conductance and IR data point to the ionic nature of the perchlorate groups in the complexes. IR data along with the 13C NMR data unequivocally proves that the coordination of the ligand to the metal ions taken place in a bidentate fashion through the oxygen of the benzamide group and the nitrogen of the heterocyclic ring. From a comparison of the visible electronic spectral shapes of the Nd3+, Ho3+ and Er3+ complexes with those reported in the literature, a 6-coordinate geometry around the metal ion has been assigned in all the complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

New complexes of lanthanide perchlorates with N-(2-pyrimidyl)benzamide (BApymH) of the general formulae [Ln(BApymH)4](ClO4)3 (where Ln = La-Yb and Y) have been synthesised and characterised by chemical analysis, molar conductivity and physical methods such as infrared and electronic spectra in the visible region. Molar conductance and infrared data point to the ionic nature of the per-chlorate groups in the complexes. IR data unequivocally proves that the coordination of the ligand to the metal ion takes place in a bidentate fashion through the oxygen of the secondary amide and nitrogen of the pyrimidine ring. From a comparison of the visible electronic spectral shapes of the Nd3+ and Ho3+ complexes with those reported in the literature, an eight coordinate geometry around the metal ion has tentatively been assigned in all the complexes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl-amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra. The complexes of 4-cyano pyridine-1-oxides have the composition Ln(CyPO)6(ClO4)3. 2H2O (Ln=La, Sm, Dy and Ho); Ln(CyPO)7 (ClO4)3. 2H2O (Ln=Pr, Nd, Er and Yb); and Ln(CyPO)5 (ClO4)3. 2H2O (Ln=Gd and Tb). The complexes of 4-chloro 2-picoline-1-oxide analyse for the formulae Ln(CpicO)6 (ClO4)3 (Ln=La, Pr, Nd and Ho); and Ln (CpicO)5 (ClO4)3 (Ln=Er and Yb), and those of 4-dimethylamino 2-picoline-1-oxide for Ln(DMPicO)6 (ClO4)3 (Ln=La and Nd); Ln(DMPicO)7 (ClO4)3 (Ln=Gd, Er and Yb); and Ln(DMPicO)8 (ClO4)3 (Ln=Dy and Ho).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Antipyrlne is a well known llgand for lanthanldes (i). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrlne is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complexes of lanthanide perchlorates with 4-cyano pyridine-1-oxide, 4-chloro 2-picoline-1-oxide and 4-dimethyl amino 2-picoline-1-oxide have been isolated for the first time and characterized by analysis, conductance, infrared, NMR and electronic spectra.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Complexes of lanthanide iodides with 3-methylpyridine-1-oxide of the formula Ln(3-MePyO)8I3.xH2O where x = 0 for Ln = La and Tb, x = 1 for Ln = Pr, and x = 2 for Ln = Nd, Sm, Dy, Yb, and Y have been prepared and characterized by chemical analyses, conductance, infrared, proton nmr, and DTA data. Infrared and proton nmr data have been interpreted in terms of the coordination of the ligand to the metal ion through the oxygen of the N—O group. Proton nmr spectrum of the Yb(III) complex is indicative of a restricted rotation of the pyridine ring about the N—O bond.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Abstract is not available.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Pyridine-1-oxide complexes of lanthanide iodides of the formulaLn(PyO)8I3 whereLn=La, Pr, Nd, Tb, Dy, Er, and Yb have been prepared and characterised by analyses, molecular weight, conductance, infrared and proton NMR data. Proton NMR and IR data have shown the coordination of the ligand to the metal through the oxygen atom of the N–O group. NMR data have been interpreted in terms of a distorted square antiprismatic geometry in solution.