974 resultados para HIGHLY VACCINATED POPULATION
Resumo:
Nowadays, genome-wide association studies (GWAS) and genomic selection (GS) methods which use genome-wide marker data for phenotype prediction are of much potential interest in plant breeding. However, to our knowledge, no studies have been performed yet on the predictive ability of these methods for structured traits when using training populations with high levels of genetic diversity. Such an example of a highly heterozygous, perennial species is grapevine. The present study compares the accuracy of models based on GWAS or GS alone, or in combination, for predicting simple or complex traits, linked or not with population structure. In order to explore the relevance of these methods in this context, we performed simulations using approx 90,000 SNPs on a population of 3,000 individuals structured into three groups and corresponding to published diversity grapevine data. To estimate the parameters of the prediction models, we defined four training populations of 1,000 individuals, corresponding to these three groups and a core collection. Finally, to estimate the accuracy of the models, we also simulated four breeding populations of 200 individuals. Although prediction accuracy was low when breeding populations were too distant from the training populations, high accuracy levels were obtained using the sole core-collection as training population. The highest prediction accuracy was obtained (up to 0.9) using the combined GWAS-GS model. We thus recommend using the combined prediction model and a core-collection as training population for grapevine breeding or for other important economic crops with the same characteristics.
Resumo:
Introduction: Vitamin D plays a major role in bone metabolism and neuromuscular function. Supplementation with vitamin D is effective to reduce the risk of fall and of fracture. However adherence to oral daily vitamin D supplementation is low. Screening and correcting vitamin D insufficiency in a general rheumatologic population could improve both morbidity and quality of life in these patients with chronic painful disorders and at high risk of osteoporosis. After determining the prevalence of vitamin D deficiency in this population, we evaluated if supplementation with a single high dose of oral 25-OH vitamin D3 was sufficient to correct this abnormality. Methods: During one month (November 2009), levels of 25-OH vitamin D were systematically determined in our rheumatology outpatient clinic and classified into three groups: vitamin D deficiency (<10 µg/l), vitamin D insufficiency (10 to 30µg/l) or normal vitamin D (>30 µg/l). Patients with insufficiency or deficiency received respectively a single high dose of 300'000 IU or 600'000 IU oral vitamin D3. In addition, all patients with osteoporosis were prescribed daily supplement of calcium (1g) and vitamin D (800 IU). 25-OH vitamin D levels were reevaluated after 3 months. Results: Vitamin D levels were initially determined in 292 patients (mean age 53, 211 women, 87% Caucasian). 77% had inflammatory rheumatologic disease (IRD), 20% osteoporosis (OP) and 12% degenerative disease (DD). Vitamin D deficiency was present in 20 (6.8%), while 225 (77.1%) had insufficiency. Of the 245 patients with levels <30µg/l, a new determination of vitamin D level was available in 173 (71%) at 3 months (table 1). Conclusion: Vitamin D insufficiency is highly prevalent in our rheumatologic population (84%), and is not adequately corrected by a single high dose of oral vitamin D3 in more than half of the patients with IRD and DD. In patients with OP, despite association of a single high dose with daily oral vitamin D supplementation, 40% of patients are still deficient when reevaluated at 3 months.
Resumo:
Genetic variability of a population of Aedes aegypti from Paraná, Brazil, using the mitochondrial ND4 gene. To analyze the genetic variability of populations of Aedes aegypti, 156 samples were collected from 10 municipalities in the state of Paraná, Brazil. A 311 base pairs (bp) region of the NADH dehydrogenase subunit 4 (ND4) mitochondrial gene was examined. An analysis of this fragment identified eight distinct haplotypes. The mean genetic diversity was high (h = 0.702; p = 0.01556). AMOVA analysis indicated that most of the variation (67%) occurred within populations and the F ST value (0.32996) was highly significant. F ST values were significant in most comparisons among cities. The isolation by distance was not significant (r = -0.1216 and p = 0, 7550), indicating that genetic distance is not related to geographic distance. Neighbor-joining analysis showed two genetically distinct groups within Paraná. The DNA polymorphism and AMOVA data indicate a decreased gene flow in populations from Paraná, which can result in increased vectorial competence.
Resumo:
Social organisms exhibit conspicuous intraspecific variation in all facets of their social organization. A prominent example of such variation in the highly eusocial Hymenoptera is differences in the number of reproductive queens per colony, Differences in queen number in ants are associated with differences in a host of reproductive and social traits, including queen phenotype and breeding strategy, mode of colony reproduction, and pattern of sex allocation. We examine the causes and consequences of changes in colony queen number and associated traits using the fire ant Solenopsis invicta as a principal model. Ecological constraints on mode of colony founding may act as important selective forces causing the evolution of queen number in this and many other ants, with social organization generally perpetuated across generations by means of the social environment molding appropriate queen phenotypes and reproductive strategies. Shifts in colony queen number have profound effects on genetic structure within nests and may also influence genetic structure at higher levels (aggregations of nests or local demes) because of the association of queen number with particular mating and dispersal habits. Divergence of breeding habits between populations with different social organizations has the potential to promote genetic differentiation between these social variants. Thus, evolution of social organization can be important in generating intrinsic selective regimes that channel subsequent social evolution and in initiating the development of significant population genetic structure, including barriers to gene flow important in cladogenesis.
Resumo:
This work examines behavioural relationships between young females (potential queens) and workers, in a multi-nest population (supercolony), of Formica lugubris. Each nest contains hundreds of functional queens but the colony is initiated by a single foundress (secondary polygyny). Thus, recruitment of new queens into the nests is part of the population dynamics. Substantial variation in worker response towards introduced female sexuals, ranging from execution to complete acceptance, is demonstrated. The mating status of the introduced females has a clear effect on the worker response: virgin females are accepted with about twice the probability of inseminated females. When native alates are present in a nest, all introduced females are accepted with higher probability than when the native alates are absent, later in the season. No effect of distance (between donor and recipient nests) on the worker reaction was found, within the supercolony borders. Proximate mechanisms and selective forces regulating the recruitment process are discussed in light of these findings.
Resumo:
This study reports the isolation and characterization of seven highly polymorphic microsatellite loci in Silene vulgaris (Caryophyllaceae). The loci were isolated from two libraries constructed from genomic DNA enriched for CA and GA repeats. These markers yielded nine to 40 alleles per locus (mean 22.1) in a survey of 45 individuals from a single population located in the western Swiss Alps. Average observed heterozygosity ranged from 16.2 to 77.4%. These microsatellite loci should be valuable tools for studying fine-scale genetic structure.
Resumo:
BACKGROUND: While oral health is part of general health and well-being, oral health disparities nevertheless persist. Potential mechanisms include socioeconomic factors that may influence access to dental care in the absence of universal dental care insurance coverage. We investigated the evolution, prevalence and determinants (including socioeconomic) of forgoing of dental care for economic reasons in a Swiss region, over the course of six years. METHODS: Repeated population-based surveys (2007-2012) of a representative sample of the adult population of the Canton of Geneva, Switzerland. Forgone dental care, socioeconomic and insurance status, marital status, and presence of dependent children were assessed using standardized methods. RESULTS: A total of 4313 subjects were included, 10.6% (457/4313) of whom reported having forgone dental care for economic reasons in the previous 12 months. The crude percentage varied from 2.4% in the wealthiest group (monthly income ≥ 13,000 CHF, 1 CHF ≈ 1$) to 23.5% among participants with the lowest income (<3,000 CHF). Since 2007/8, forgoing dental care remained stable overall, but in subjects with a monthly income of <3,000 CHF, the adjusted percentage increased from 16.3% in 2007/8 to 20.6% in 2012 (P trend = 0.002). Forgoing dental care for economic reasons was independently associated with lower income, younger age, female gender, current smoking, having dependent children, divorced status and not living with a partner, not having a supplementary health insurance, and receipt of a health insurance premium cost-subsidy. CONCLUSIONS: In a Swiss region without universal dental care insurance coverage, prevalence of forgoing dental care for economic reasons was high and highly dependent on income. Efforts should be made to prevent high-risk populations from forgoing dental care.
Resumo:
Canine distemper virus (CDV), a member of the genus Morbillivirus induces a highly infectious, frequently lethal disease in dogs and other carnivores. Current vaccines against canine distemper consisting of attenuated viruses have been in use for many years and have greatly reduced the incidence of distemper in the dog population. However, certain strains may not guarantee adequate protection and others can induce post vaccinal encephalitis. We tested a DNA vaccine for its ability to protect dogs, the natural host of CDV, against distemper. We constructed plasmids containing the nucleocapsid, the fusion, and the attachment protein genes of a virulent canine distemper virus strain. Mice inoculated with these plasmids developed humoral and cellular immune responses against CDV antigens. Dogs immunized with the expression plasmids developed virus-neutralizing antibodies. Significantly, vaccinated dogs were protected against challenge with virulent CDV, whereas unvaccinated animals succumbed to distemper.
Resumo:
We describe an improved multiple-locus variable-number tandem-repeat (VNTR) analysis (MLVA) scheme for genotyping Staphylococcus aureus. We compare its performance to those of multilocus sequence typing (MLST) and spa typing in a survey of 309 strains. This collection includes 87 epidemic methicillin-resistant S. aureus (MRSA) strains of the Harmony collection, 75 clinical strains representing the major MLST clonal complexes (CCs) (50 methicillin-sensitive S. aureus [MSSA] and 25 MRSA), 135 nasal carriage strains (133 MSSA and 2 MRSA), and 13 published S. aureus genome sequences. The results show excellent concordance between the techniques' results and demonstrate that the discriminatory power of MLVA is higher than those of both MLST and spa typing. Two hundred forty-two genotypes are discriminated with 14 VNTR loci (diversity index, 0.9965; 95% confidence interval, 0.9947 to 0.9984). Using a cutoff value of 45%, 21 clusters are observed, corresponding to the CCs previously defined by MLST. The variability of the different tandem repeats allows epidemiological studies, as well as follow-up of the evolution of CCs and the identification of potential ancestors. The 14 loci can conveniently be analyzed in two steps, based upon a first-line simplified assay comprising a subset of 10 loci (panel 1) and a second subset of 4 loci (panel 2) that provides higher resolution when needed. In conclusion, the MLVA scheme proposed here, in combination with available on-line genotyping databases (including http://mlva.u-psud.fr/), multiplexing, and automatic sizing, can provide a basis for almost-real-time large-scale population monitoring of S. aureus.
Resumo:
Introduction Societies of ants, bees, wasps and termites dominate many terrestrial ecosystems (Wilson 1971). Their evolutionary and ecological success is based upon the regulation of internal conflicts (e.g. Ratnieks et al. 2006), control of diseases (e.g. Schmid-Hempel 1998) and individual skills and collective intelligence in resource acquisition, nest building and defence (e.g. Camazine 2001). Individuals in social species can pass on their genes not only directly trough their own offspring, but also indirectly by favouring the reproduction of relatives. The inclusive fitness theory of Hamilton (1963; 1964) provides a powerful explanation for the evolution of reproductive altruism and cooperation in groups with related individuals. The same theory also led to the realization that insect societies are subject to internal conflicts over reproduction. Relatedness of less-than-one is not sufficient to eliminate all incentive for individual selfishness. This would indeed require a relatedness of one, as found among cells of an organism (Hardin 1968; Keller 1999). The challenge for evolutionary biology is to understand how groups can prevent or reduce the selfish exploitation of resources by group members, and how societies with low relatedness are maintained. In social insects the evolutionary shift from single- to multiple queens colonies modified the relatedness structure, the dispersal, and the mode of colony founding (e.g. (Crozier & Pamilo 1996). In ants, the most common, and presumably ancestral mode of reproduction is the emission of winged males and females, which found a new colony independently after mating and dispersal flights (Hölldobler & Wilson 1990). The alternative reproductive tactic for ant queens in multiple-queen colonies (polygyne) is to seek to be re-accepted in their natal colonies, where they may remain as additional reproductives or subsequently disperse on foot with part of the colony (budding) (Bourke & Franks 1995; Crozier & Pamilo 1996; Hölldobler & Wilson 1990). Such ant colonies can contain up to several hundred reproductive queens with an even more numerous workforce (Cherix 1980; Cherix 1983). As a consequence in polygynous ants the relatedness among nestmates is very low, and workers raise brood of queens to which they are only distantly related (Crozier & Pamilo 1996; Queller & Strassmann 1998). Therefore workers could increase their inclusive fitness by preferentially caring for their closest relatives and discriminate against less related or foreign individuals (Keller 1997; Queller & Strassmann 2002; Tarpy et al. 2004). However, the bulk of the evidence suggests that social insects do not behave nepotistically, probably because of the costs entailed by decreased colony efficiency or discrimination errors (Keller 1997). Recently, the consensus that nepotistic behaviour does not occur in insect colonies was challenged by a study in the ant Formica fusca (Hannonen & Sundström 2003b) showing that the reproductive share of queens more closely related to workers increases during brood development. However, this pattern can be explained either by nepotism with workers preferentially rearing the brood of more closely related queens or intrinsic differences in the viability of eggs laid by queens. In the first chapter, we designed an experiment to disentangle nepotism and differences in brood viability. We tested if workers prefer to rear their kin when given the choice between highly related and unrelated brood in the ant F. exsecta. We also looked for differences in egg viability among queens and simulated if such differences in egg viability may mistakenly lead to the conclusion that workers behave nepotistically. The acceptance of queens in polygnous ants raises the question whether the varying degree of relatedness affects their share in reproduction. In such colonies workers should favour nestmate queens over foreign queens. Numerous studies have investigated reproductive skew and partitioning of reproduction among queens (Bourke et al. 1997; Fournier et al. 2004; Fournier & Keller 2001; Hammond et al. 2006; Hannonen & Sundström 2003a; Heinze et al. 2001; Kümmerli & Keller 2007; Langer et al. 2004; Pamilo & Seppä 1994; Ross 1988; Ross 1993; Rüppell et al. 2002), yet almost no information is available on whether differences among queens in their relatedness to other colony members affects their share in reproduction. Such data are necessary to compare the relative reproductive success of dispersing and non-dispersing individuals. Moreover, information on whether there is a difference in reproductive success between resident and dispersing queens is also important for our understanding of the genetic structure of ant colonies and the dynamics of within group conflicts. In chapter two, we created single-queen colonies and then introduced a foreign queens originating from another colony kept under similar conditions in order to estimate the rate of queen acceptance into foreign established colonies, and to quantify the reproductive share of resident and introduced queens. An increasing number of studies have investigated the discrimination ability between ant workers (e.g. Holzer et al. 2006; Pedersen et al. 2006), but few have addressed the recognition and discrimination behaviour of workers towards reproductive individuals entering colonies (Bennett 1988; Brown et al. 2003; Evans 1996; Fortelius et al. 1993; Kikuchi et al. 2007; Rosengren & Pamilo 1986; Stuart et al. 1993; Sundström 1997; Vásquez & Silverman in press). These studies are important, because accepting new queens will generally have a large impact on colony kin structure and inclusive fitness of workers (Heinze & Keller 2000). In chapter three, we examined whether resident workers reject young foreign queens that enter into their nest. We introduced mated queens into their natal nest, a foreign-female producing nest, or a foreign male-producing nest and measured their survival. In addition, we also introduced young virgin and mated queens into their natal nest to examine whether the mating status of the queens influences their survival and acceptance by workers. On top of polgyny, some ant species have evolved an extraordinary social organization called 'unicoloniality' (Hölldobler & Wilson 1977; Pedersen et al. 2006). In unicolonial ants, intercolony borders are absent and workers and queens mix among the physically separated nests, such that nests form one large supercolony. Super-colonies can become very large, so that direct cooperative interactions are impossible between individuals of distant nests. Unicoloniality is an evolutionary paradox and a potential problem for kin selection theory because the mixing of queens and workers between nests leads to extremely low relatedness among nestmates (Bourke & Franks 1995; Crozier & Pamilo 1996; Keller 1995). A better understanding of the evolution and maintenance of unicoloniality requests detailed information on the discrimination behavior, dispersal, population structure, and the scale of competition. Cryptic genetic population structure may provide important information on the relevant scale to be considered when measuring relatedness and the role of kin selection. Theoretical studies have shown that relatedness should be measured at the level of the `economic neighborhood', which is the scale at which intraspecific competition generally takes place (Griffin & West 2002; Kelly 1994; Queller 1994; Taylor 1992). In chapter four, we conducted alarge-scale study to determine whether the unicolonial ant Formica paralugubris forms populations that are organised in discrete supercolonies or whether there is a continuous gradation in the level of aggression that may correlate with genetic isolation by distance and/or spatial distance between nests. In chapter five, we investigated the fine-scale population structure in three populations of F. paralugubris. We have developed mitochondria) markers, which together with the nuclear markers allowed us to detect cryptic genetic clusters of nests, to obtain more precise information on the genetic differentiation within populations, and to separate male and female gene flow. These new data provide important information on the scale to be considered when measuring relatedness in native unicolonial populations.
Resumo:
OBJECTIVES: Etravirine (ETV) is metabolized by cytochrome P450 (CYP) 3A, 2C9, and 2C19. Metabolites are glucuronidated by uridine diphosphate glucuronosyltransferases (UGT). To identify the potential impact of genetic and non-genetic factors involved in ETV metabolism, we carried out a two-step pharmacogenetics-based population pharmacokinetic study in HIV-1 infected individuals. MATERIALS AND METHODS: The study population included 144 individuals contributing 289 ETV plasma concentrations and four individuals contributing 23 ETV plasma concentrations collected in a rich sampling design. Genetic variants [n=125 single-nucleotide polymorphisms (SNPs)] in 34 genes with a predicted role in ETV metabolism were selected. A first step population pharmacokinetic model included non-genetic and known genetic factors (seven SNPs in CYP2C, one SNP in CYP3A5) as covariates. Post-hoc individual ETV clearance (CL) was used in a second (discovery) step, in which the effect of the remaining 98 SNPs in CYP3A, P450 cytochrome oxidoreductase (POR), nuclear receptor genes, and UGTs was investigated. RESULTS: A one-compartment model with zero-order absorption best characterized ETV pharmacokinetics. The average ETV CL was 41 (l/h) (CV 51.1%), the volume of distribution was 1325 l, and the mean absorption time was 1.2 h. The administration of darunavir/ritonavir or tenofovir was the only non-genetic covariate influencing ETV CL significantly, resulting in a 40% [95% confidence interval (CI): 13-69%] and a 42% (95% CI: 17-68%) increase in ETV CL, respectively. Carriers of rs4244285 (CYP2C19*2) had 23% (8-38%) lower ETV CL. Co-administered antiretroviral agents and genetic factors explained 16% of the variance in ETV concentrations. None of the SNPs in the discovery step influenced ETV CL. CONCLUSION: ETV concentrations are highly variable, and co-administered antiretroviral agents and genetic factors explained only a modest part of the interindividual variability in ETV elimination. Opposing effects of interacting drugs effectively abrogate genetic influences on ETV CL, and vice-versa.
Resumo:
CONTEXT: Mortality among human immunodeficiency virus (HIV)-infected individuals has decreased dramatically in countries with good access to treatment and may now be close to mortality in the general uninfected population. OBJECTIVE: To evaluate changes in the mortality gap between HIV-infected individuals and the general uninfected population. DESIGN, SETTING, AND POPULATION: Mortality following HIV seroconversion in a large multinational collaboration of HIV seroconverter cohorts (CASCADE) was compared with expected mortality, calculated by applying general population death rates matched on demographic factors. A Poisson-based model adjusted for duration of infection was constructed to assess changes over calendar time in the excess mortality among HIV-infected individuals. Data pooled in September 2007 were analyzed in March 2008, covering years at risk 1981-2006. MAIN OUTCOME MEASURE: Excess mortality among HIV-infected individuals compared with that of the general uninfected population. RESULTS: Of 16,534 individuals with median duration of follow-up of 6.3 years (range, 1 day to 23.8 years), 2571 died, compared with 235 deaths expected in an equivalent general population cohort. The excess mortality rate (per 1000 person-years) decreased from 40.8 (95% confidence interval [CI], 38.5-43.0; 1275.9 excess deaths in 31,302 person-years) before the introduction of highly active antiretroviral therapy (pre-1996) to 6.1 (95% CI, 4.8-7.4; 89.6 excess deaths in 14,703 person-years) in 2004-2006 (adjusted excess hazard ratio, 0.05 [95% CI, 0.03-0.09] for 2004-2006 vs pre-1996). By 2004-2006, no excess mortality was observed in the first 5 years following HIV seroconversion among those infected sexually, though a cumulative excess probability of death remained over the longer term (4.8% [95% CI, 2.5%-8.6%] in the first 10 years among those aged 15-24 years). CONCLUSIONS: Mortality rates for HIV-infected persons have become much closer to general mortality rates since the introduction of highly active antiretroviral therapy. In industrialized countries, persons infected sexually with HIV now appear to experience mortality rates similar to those of the general population in the first 5 years following infection, though a mortality excess remains as duration of HIV infection lengthens.
Resumo:
Species richness and geographical phenotypic variation in East African lacustrine cichlids are often correlated with ecological specializations and limited dispersal. This study compares mitochondrial and microsatellite genetic diversity and structure among three sympatric rock-dwelling cichlids of Lake Tanganyika, Eretmodus cyanostictus, Tropheus moorii, and Ophthalmotilapia ventralis. The species represent three endemic, phylogenetically distinct tribes (Eretmodini, Tropheini, and Ectodini), and display divergent ecomorphological and behavioral specialization. Sample locations span both continuous, rocky shoreline and a potential dispersal barrier in the form of a muddy bay. High genetic diversity and population differentiation were detected in T. moorii and E. cyanostictus, whereas much lower variation and structure were found in O. ventralis. In particular, while a 7-km-wide muddy bay curtails dispersal in all three species to a similar extent, gene flow along mostly continuous habitat appeared to be controlled by distance in E. cyanostictus, further restricted by site philopatry and/or minor habitat discontinuities in T. moorii, and unrestrained in O. ventralis. In contrast to the general pattern of high gene flow along continuous shorelines in rock-dwelling cichlids of Lake Malawi, our study identifies differences in population structure among stenotopic Lake Tanganyika species. The amount of genetic differentiation among populations was not related to the degree of geographical variation of body color, especially since more phenotypic variation is observed in O. ventralis than in the genetically highly structured E. cyanostictus.
Resumo:
SUMMARY : The evolution of animal societies, where some individuals forego their own reproductive opportunities to help others to reproduce, poses an evolutionary paradox that can be traced back to Darwin. Altruism may evolve through kin selection when the donor and recipient of altruistic acts are related to each other. In social insects, workers are generally highly related to the brood they rear when colonies are headed by a single queen. Yet some ants have an extraordinary social organization, called unicoloniality, whereby individuals from separate nests mix freely to form large supercolonies, which in some cases extend over hundreds of km. These supercolonies are characterised by a high number of queens (polygyny) and an absence of clear colony boundaries. This type of social organization represents an evolutionary paradox because relatedness between nestmates is effectively zero. In such conditions, kin selection cannot account for the evolution of reproductive altruism. Moreover, unicoloniality is thought to be unstable over time, because workers that can no longer aid close relatives may evolve more selfish strategies. The Argentine ant (Linepithema humile) is a highly invasive species listed among the hundred world's worst invaders by the UICN. Native from South America, L. humile has been accidentally introduced throughout the world. Native populations have been described as noninvasive with a family-based organization. In contrast, within its introduction range, they form unicolonial supercolonies that contain numerous nests without intraspecific aggression. The development of such unicolonial populations has been explained as a direct consequence of the ant's introduction into a new habitat, favouring a transition from family-based to open colonies. To determine if the social structure of the Argentine ant is fundamentally different between the native and the introduced range, we studied genetically and behaviourally native and introduced populations of L. humile over different geographic scales. Our results clearly indicated that there are no fundamental differences in the social organisation of the Argentine ant between the two ranges. Our investigations revealed that, contrary to previous claims, native populations have a unicolonial social organisation very similar to that observed in the introduced range. Consequently, the unicolonial social structure of the Argentine ant does not stem from a shift in social organization associated with introduction into new habitats but evolved in the native range and is likely a stable, evolutionarily ancient adaptation to the local environment. Our study on native populations of L. humile also gave important insight in the comprehension of the evolution of unicoloniality in the Argentine ant. Native supercolonies are relatively small compared to introduced ones and may co-habit in a same population. These supercolonies are genetically highly differentiated leading to a significant relatedness among nestmate workers when the different supercolonies of a population are taken as a reference population. This provides the necessary conditions for loin selection to operate. Furthermore, we examined a native population over time, which revealed a high supercolony extinction rate. If more competitive supercolonies are more likely to survive or replace other supercolonies, a subtle dynamical process between the spread of selfish traits within supercolony and the selective elimination of supercolonies with such traits may allow a stable equilibrium and the persistence of unicoloniality over time. Finally, a worldwide study of the Argentine ant showed that the introduced supercolonies originate from numerous independent introduction events. In conclusion, the success of the Argentine ant does not stem from a shift in social organization associated with its introduction into new habitats, but is most probably explained by the intrinsic characteristics developed in its native range. RESUME : L'altruisme de reproduction où certains individus renoncent à leur propre reproduction pour aider d'autres individus à se reproduire constitue l'un des plus grand paradoxe de l'évolution. En effet, comment expliquer l'évolution de comportements qui tendent à augmenter les chances de survie et le succès reproductif d'autres individus, alors que ces actes diminuent l'aptitude de leurs auteurs ? La théorie de la sélection de parentèle permet de résoudre ce problème. Cette théorie stipule qu'en aidant de proches parents à se reproduire, les individus peuvent promouvoir indirectement la transmission de copies de leurs propres gènes à la génération suivante. Chez les insectes sociaux, l'altruisme des ouvrières s'explique par la théorie de sélection de parentèle lorsque les colonies sont monogynes (constituées d'une seule reine) puisque les ouvrières sont fortement apparentées aux couvains dont elles s'occupent. Par contre, les espèces dites unicoloniales, dont les colonies forment des réseaux de nids appelés supercolonies, représentent toujours un paradoxe pour les théories de l'évolution puisque l'apparentement entre les différents individus d'un nid est nulle. De plus, l'unicolonialité ne devrait pas être stable sur le long terme parce que les ouvrières qui ne s'occupent plus de leur apparentés devraient développer des stratégies plus égoïstes au cours du temps. La fourmi d'Argentine (Linepithema humile) est une espèce invasive ayant un impact considérable sur son environnement. Originaire d'Amérique du Sud, elle a été introduite dans pratiquement toutes les régions du monde dont le climat est de type méditerranéen. Son incroyable succès invasif s'explique par sa structure sociale unicoloniale observée dans chacun des pays où elle a été introduite. Par contre, les rares études effectuées en Argentine ont suggéré que la fourmi d'Argentine n'était pas unicoloniale dans son aire native. L'unicolonialité chez la fourmi d'Argentine était donc considéré comme une conséquence de son introduction dans de nouveaux environnements. Durant cette thèse, nous avons vérifié si la structure sociale de cette espèce différait fondamentalement entre l'aire native et introduite. Pour cela, nous avons étudié, à différentes échelles géographiques, des populations introduites et argentines avec une approche génétique et comportementale. L'ensemble de nos résultats montrent que les différences entre les deux structure sociales ne sont pas aussi importantes que ce que l'on imaginait. Les populations natives sont aussi constituées de réseaux de nids coopérants. La taille de ses supercolonies est toutefois bien moins importante en Argentine et il n'est pas rare de trouver plusieurs supercolonies cohabitantes dans une même population. Nous avons démontré que ces réseaux de nids étaient constitués d'individus qui sont plus apparentés entre eux qu'ils ne le sont avec les individus d'autres supercolonies, ainsi l'unicolonialité dans son aire d'origine ne représente pas un réel paradoxe pour les théories de l'évolution. Finalement nous avons étudié la même population en Argentine à six ans d'intervalle et avons constaté que les supercolonies avaient un taux de survie très faible ce qui pourrait expliquer la stabilité de l'unicolonialité au cours du temps. Si les supercolonies les plus compétitives survivent mieux que les supercolonies dans lesquelles apparaissent des traits égoïstes, on devrait alors observer une dynamique entre l'apparition de traits égoïstes et l'élimination des supercolonies dans lesquelles ces traits égoïstes évolueraient. Finalement, une étude mondiale nous a montré que les supercolonies étaient originaires de nombreux événements d'introductions indépendants. En conclusion, le succès invasif de la fourmi d'Argentine n'est donc pas dû à un changement de comportement associé à son introduction mais est lié aux caractéristiques qu'elle a développées en Argentine.