171 resultados para HDPE


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Epitaxial crystallization of high-density polyethylene (HDPE) on isotactic polypropylene (iPP) in solution-cast films has been investigated by electron microscopy. The specimen-tilt technique of electron microscopy has been used to study the structural relationship between HDPE and iPP crystals. HDPE exhibits different crystalline morphologies in the two basic types of iPP spherulite textures, cross-hatched and lathlike regions. In the former, the crystallographic c axis of HDPE lamellae is in the film plane, while in the latter, the c axis of HDPE crystallites is at an angle of about 50-degrees with the normal of the film. In both structural regions of iPP, however, the contact planes of epitaxial growth are (0 1 0) for iPP and (1 0 0) for HDPE.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

最近,聚合物之间的附生结晶引起人们的极大兴趣和关注。附生结晶是一种结晶物质在另一种结晶物质上的取向生长,二者之间有特殊的作用。这种附生作用对结晶聚合物共混体系的形态结构和性能有极为重要的影响。本工作以电子显微镜方法研究熔体拉伸直接导致等规聚丙烯(iPP)和高密度聚乙烯(HDPE)共混物附生结晶。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

本工作是用电子显微镜研究三种PE(HDPE、LLDPE和LDPE)高取向超薄膜的结晶结构。不同种类PE高取向超薄膜以特殊的熔体拉伸方法制备。该方法的特点是以较低的拉伸速率(4cm/Sec)在很窄的熔体流动区域内(0.5—1.0μm),获得非常高的纵向流动梯度(4×10~4/Sec)和过冷速率。所得超薄膜厚度为50-100nm,可直接用TEM观察。所用电镜为H-600型,操作电压为100KV。明场像采用欠焦成像技术。并利用电子显微镜的多功能,诸如衍射、明场、暗场、样品旋转及倾斜等严格确定了三种PE熔体拉伸膜取向态的晶体结构。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

对半结晶的聚合物PE和PP而言,当结晶不满足Bragg取向时,靠散射反差几乎不可能区分非晶区和结晶区。所以,对大多数多相聚合物体系,相差是一种很重要的成像技术。在PP/PE共混体系中,如何区分PP和PE是聚合物透射电子显微学中的难点。本文采用相差成像技术成功地揭示出PP和PP/PE超薄膜中的片晶结构,而无需借助重金属修饰或化学染色技术。理论计算表明,只要样品足够薄,利用位相反差区分HDPE和PP的晶区是切实可行的。实验像证实了上述理论预测。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

在等规聚丙烯(iPP)与高密度聚乙烯(HDPE)共混物的熔体拉伸薄膜中,两组份均以高取向的片晶形式存在,片晶生长方向垂直于拉伸方向。当iPP含量小于20%时,无明显的iPP相区存在;在iPP含量为40—60%时,两组份各自形成继续相,而在iPP含量大于70%时,HDPE以分散相存在。iPP的加入,使HDPE的片晶宽度减小,同时影响其结构的对称性,即由纯HDPE的非对称近单晶结构变为对称的纤维结构。 在制膜温度较高(135—140℃),HDPE含量较低(小于30%)时,HDPE在iPP上附生结晶。两种片晶的c轴成45°—50°交角,附生结晶的接触面为HDPE的(100)和iPP的(010)。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

聚乙烯是目前国内外合成树脂生产中产量最大的品种,应用范围十分广泛。通常将聚乙烯分为三大类,即低密度聚乙烯(LDPE),线型低密度聚乙烯(LLDPE)和高密度聚乙烯(HDPE)。它们的性能虽各有特点,但在某些方面单独使用,仍嫌综合使用性能不够理想。对此,人们曾试

Relevância:

10.00% 10.00%

Publicador:

Resumo:

基于热粘弹性积分型本构关系,考虑材料性能依赖于温度变化及相变潜热的影响,利用有限元软件ANSYS热-力耦合及载荷步功能模拟结晶型高密度聚乙烯塑料压力管道热板焊接过程。并对焊接接头的应力分布进行有限元分析,得到了环向、轴向及径向瞬态应力分布规律。采用盲孔法和锯切法测量焊后残余应力,实测结果与数值分析基本吻合。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

基于热粘弹性积分型本构关系,考虑材料性能依赖于温度变化及相变潜热的影响,利用AN SYS热-力耦合及载荷步功能模拟结晶型高密度聚乙烯(HDPE)塑料压力管道热板焊接过程,并对焊接接头的应力分布进行有限元分析,得到了环向、轴向以及径向瞬态应力分布的基本规律。采用盲孔法和锯切法测量焊后残余应力,实测结果与数值分析基本符合

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The principal objective of this thesis was to investigate the ability of reversible optical O2 sensors to be incorporated into food/beverage packaging systems to continuously monitor O2 levels in a non-destructive manner immediately postpackaging and over time. Residual levels of O2 present in packs can negatively affect product quality and subsequently, product shelf-life, especially for O2-sensitive foods/beverages. Therefore, the ability of O2 sensors to continuously monitor O2 levels present within food/beverage packages was considered commercially relevant in terms of identifying the consequences of residual O2 on product safety and quality over time. Research commenced with the development of a novel range of O2 sensors based on phosphorescent platinum and palladium octaethylporphyrin-ketones (OEPk) in nano-porous high density polyethylene (HDPE), polypropylene (PP) polytetrafluoroethylene (PTFE) polymer supports. Sensors were calibrated over a temperature range of -10°C to +40°C and deemed suitable for food and beverage packaging applications. This sensor technology was used and demonstrated itself effective in determining failures in packaging containment. This was clearly demonstrated in the packaging of cheese string products. The sensor technology was also assessed across a wide range of packaged products; beer, ready-to-eat salad products, bread and convenience-style, muscle-based processed food products. The O2 sensor technology performed extremely well within all packaging systems. The sensor technology adequately detected O2 levels in; beer bottles prior to and following pasteurisation, modified atmosphere (MA) packs of ready-to-eat salad packs as respiration progressed during product storage and MA packs of bread and convenience-style muscle-based products as mycological growth occurred in food packs over time in the presence and absence of ethanol emitters. The use of the technology, in conjunction with standard food quality assessment techniques, showed remarkable usefulness in determining the impact of actual levels of O2 on specific quality attributes. The O2 sensing probe was modified, miniaturised and automated to screen for the determination of total aerobic viable counts (TVC) in several fish species samples. The test showed good correlation with conventional TVC test (ISO:4833:2003), analytical performance and ruggedness with respect to variation of key assay parameters (probe concentration and pipetting volume). Overall, the respirometric fish TVC test was simple to use, possessed a dynamic microbial range (104-107 cfu/g sample), had an accuracy of +/- one log(cfu/g sample) and was rapid. Its ability to assess highly perishable products such as fish for total microbial growth in <12 hr demonstrates commercial potential.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A unique in situ multiaxial deformation device has been designed and built specifically for simultaneous synchrotron small angle X-ray scattering (SAXS) and wide angle X-ray scattering (WAXS) measurements. SAXS and WAXS patterns of high-density polyethylene (HDPE) and HDPE/clay nanocomposites were measured in real time during in situ multiaxial deformation at room temperature and at 55 degrees C. It was observed that the morphological evolution of polyethylene is affected by the existence of clay platelets as well as the deformation temperature and strain rate. Martensitic transformation of orthorhombic into monoclinic crystal phases was observed under strain in HDPE, which is delayed and hindered in the presence of clay nanoplatelets. From the SAXS measurements, it was observed that the thickness of the interlamellar amorphous region increased with increasing strain, which is due to elongation of the amorphous chains. The increase in amorphous layer thickness is slightly higher for the nanocomposites compared to the neat polymer. (C) 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 49: 669-677, 2011

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical behavior of microfibrilar composites (MFC), consisting of a matrix of high-density polyethylene (HDPE) and reinforcement of polyamide 6 (PA6) fibrils, with and without compatibilization, was studied. The composites were produced by conventional processing techniques with various shape and arrangement of the PA6 reinforcing entities: long, unidirectional, or crossed bundles of fibrils (UDP and CPC, respectively), middle-length, randomly oriented bristles (MRB), or non-oriented micrometric PA6 spheres (NOM). The tensile, flexural, and impact properties of the MFC materials (UDP, CPC, and MRB) were determined as a function of the PA6 reinforcement shape, alignment and content, and compared with those of NOM, the non-fibrous composite. It was concluded that the in-situ MFC materials based on HDPE/PA6 blends display improvements in the mechanical behavior when compared with the neat HDPE matrix, e.g., up to 33% for the Young modulus, up to 119% for the ultimate tensile strength, and up to 80% for the flexural stiffness. Copyright © 2011 Society of Plastics Engineers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hospital-acquired infections pose both a major risk to patient wellbeing and an economic burden on global healthcare systems, with the problem compounded by the emergence of multidrug resistant and biocide tolerant bacterial pathogens. Many inanimate surfaces can act as a reservoir for infection, and adequate disinfection is difficult to achieve and requires direct intervention. In this study we demonstrate the preparation and performance of materials with inherent photodynamic, surface-active, persistent antimicrobial properties through the incorporation of photosensitizers into high density poly(ethylene) (HDPE) using hot-melt extrusion, which require no external intervention except a source of visible light. Our aim is to prevent bacterial adherence to these surfaces and eliminate them as reservoirs of nosocomial pathogens, thus presenting a valuable advance in infection control. A two-layer system with one layer comprising photosensitizer-incorporated HDPE, and one layer comprising HDPE alone is also described to demonstrate the versatility of our approach. The photosensitizer-incorporated materials are capable of reducing the adherence of viable bacteria by up to 3.62 Log colony forming units (CFU) per square centimeter of material surface for methicillin resistant Staphylococcus aureus (MRSA), and by up to 1.51 Log CFU/cm2 for Escherichia coli. Potential applications for the technology are in antimicrobial coatings for, or materials comprising objects, such as tubing, collection bags, handrails, finger-plates on hospital doors, or medical equipment found in the healthcare setting.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to develop a new generation of extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. The variations in MFI are due to differences in the source of the recycled material used. The work describes how melt viscosity for specific extruder/die system is calculated in real time using the rheological properties of the materials, the pressure drop through the extruder die and the actual throughput measurements using a gravimetric loss-in-weight hopper feeder. A closed-loop controller is also developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. Such a system will improve processability of mixed MFI polymers may also reduce the risk of polymer melt degradation, reduce producing large volumes of scrap/waste and lead to improvement in product quality. The experimental results of real time viscosity measurement and control using a 38 mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this paper is to develop a new extruder control system for recycled materials which has ability to automatically maintain constant a polymer melt viscosity of mixed recycled polymers during extrusion, regardless of variations in the Melt Flow Index (MFI) of recycled mixed grade high density polyethylene (HDPE) feedstock. A closed-loop controller is developed to automatically regulate screw speed and barrel temperature profile to achieve constant viscosity and enable consistent processing of variable grade recycled HDPE materials. The experimental results of real time viscosity measurement and control using a 38mm single screw extruder with different recycled HDPEs with widely different MFIs are reported in this work

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The structure and properties of melt mixed high-density polyethylene/multi-walled carbon nanotube (HDPE/MWCNT) composites processed by compression molding and blown film extrusion were investigated to assess the influence of processing route on properties. The addition of MWCNTs leads to a more elastic response during deformations that result in a more uniform thick-ness distribution in the blown films. Blown film composites exhibit better mechanical properties due to the enhanced orientation and disentanglement of MWCNTs. At a blow up ratio (BUR) of 3 the breaking strength and elongation in the machine direction of the film with 4 wt % MWCNTs are 239% and 1054% higher than those of compression molded (CM) samples. Resistivity of the composite films increases significantly with increasing BURs due to the destruction of conductive pathways. These pathways can be recovered partially using an appropriate annealing process. At 8 wt % MWCNTs, there is a sufficient density of nanotubes to maintain a robust network even at high BURs.