994 resultados para Hückel-Möbius transition states


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biodiesel industry in the United States has realized significant growth over the past decade through large increases in annual production and production capacity and a transition from smaller batch plants to larger-scale continuous producers. The larger, continuous-flow plants provide operating cost advantages over the smaller batch plants through their ability to capture co-products and reuse certain components in the production process. This paper uses a simple capital budgeting model developed by the authors along with production data supplied by industry sources to estimate production costs, return-on-investment levels, and break-even conditions for two common plant sizes (30 and 60 million gallon annual capacities) over a range of biodiesel and feedstock price levels. The analysis shows that the larger plant realizes returns to scale in both labor and capital costs, enabling the larger plant to pay up to $0.015 more per pound for the feedstock to achieve equivalent return levels as the smaller plant under the same conditions. The paper contributes to the growing literature on the biodiesel industry by using the most current conversion rates for the production technology and current price levels to estimate biodiesel production costs and potential plant performance, providing a useful follow-up to previous studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tin-oxide nanoparticles with controlled narrow size distributions are synthesized while physically encapsulated inside silica mesoporous templates. By means of ultraviolet-visible spectroscopy, a redshift of the optical absorbance edge is observed. Photoluminescence measurements corroborate the existence of an optical transition at 3.2 eV. The associated band of states in the semiconductor gap is present even on template-synthesized nanopowders calcined at 800°C, which contrasts with the evolution of the gap states measured on materials obtained by other methods. The gap states are thus considered to be surface localized, disappearing with surface faceting or being hidden by the surface-to-bulk ratio decrease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intensive numerical studies of exact ground states of the two-dimensional ferromagnetic random field Ising model at T=0, with a Gaussian distribution of fields, are presented. Standard finite size scaling analysis of the data suggests the existence of a transition at ¿c=0.64±0.08. Results are compared with existing theories and with the study of metastable avalanches in the same model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider damage spreading transitions in the framework of mode-coupling theory. This theory describes relaxation processes in glasses in the mean-field approximation which are known to be characterized by the presence of an exponentially large number of metastable states. For systems evolving under identical but arbitrarily correlated noises, we demonstrate that there exists a critical temperature T0 which separates two different dynamical regimes depending on whether damage spreads or not in the asymptotic long-time limit. This transition exists for generic noise correlations such that the zero damage solution is stable at high temperatures, being minimal for maximal noise correlations. Although this dynamical transition depends on the type of noise correlations, we show that the asymptotic damage has the good properties of a dynamical order parameter, such as (i) independence of the initial damage; (ii) independence of the class of initial condition; and (iii) stability of the transition in the presence of asymmetric interactions which violate detailed balance. For maximally correlated noises we suggest that damage spreading occurs due to the presence of a divergent number of saddle points (as well as metastable states) in the thermodynamic limit consequence of the ruggedness of the free-energy landscape which characterizes the glassy state. These results are then compared to extensive numerical simulations of a mean-field glass model (the Bernasconi model) with Monte Carlo heat-bath dynamics. The freedom of choosing arbitrary noise correlations for Langevin dynamics makes damage spreading an interesting tool to probe the ruggedness of the configurational landscape.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A general dynamical model for the first-order optical Fréedericksz transition incorporating spatial transverse inhomogeneities and hydrodynamic effects is discussed in the framework of a time-dependent Ginzburg-Landau model. The motion of an interface between two coexisting states with different director orientations is considered. A uniformly translating front solution of the dynamical equations for the motion of that interface is described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rigorous quantum dynamics calculations of reaction rates and initial state-selected reaction probabilities of polyatomic reactions can be efficiently performed within the quantum transition state concept employing flux correlation functions and wave packet propagation utilizing the multi-configurational time-dependent Hartree approach. Here, analytical formulas and a numerical scheme extending this approach to the calculation of state-to-state reaction probabilities are presented. The formulas derived facilitate the use of three different dividing surfaces: two dividing surfaces located in the product and reactant asymptotic region facilitate full state resolution while a third dividing surface placed in the transition state region can be used to define an additional flux operator. The eigenstates of the corresponding thermal flux operator then correspond to vibrational states of the activated complex. Transforming these states to reactant and product coordinates and propagating them into the respective asymptotic region, the full scattering matrix can be obtained. To illustrate the new approach, test calculations study the D + H2(ν, j) → HD(ν′, j′) + H reaction for J = 0.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is dedicated to investigation of the energy spectrum of one of the most anisotropic narrow-gap semiconductors, CdSb. At the beginning of the present studies even the model of its energy band structure was not clear. Measurements of galvanomagnetic effects in wide temperature range (1.6 - 300 K) and in magnetic fields up to 30 T were chosen for clarifying of the energy spectrum in the intentionally undoped CdSb single crystals and doped with shallow impurities (In, Ag). Detection of the Shubnikov - de Haas oscillations allowed estimating the fundamental energy spectrum parameters. The shapes of the Fermi surfaces of electrons (sphere) and holes (ellipsoid), the number of the equivalent extremums for valence band (2) and their positions in the Brillouin zone were determined for the first time in this work. Also anisotropy coefficients, components of the tensor of effective masses of carriers, effective masses of density of states, nonparabolicity of the conduction and valence bands, g-factor and its anisotropy for n- and p-CdSb were estimated for the first time during these studies. All the results obtained are compared with the cyclotron resonance data and the corresponding theoretical calculations for p-CdSb. This is basic information for the analyses of the complex transport properties of CdSb and for working out the energy spectrum model of the shallow energy levels of defects and impurities in this semiconductor. It was found out existence of different mechanisms of hopping conductivity in the presence of metal - insulator transition induced by magnetic field in n- and p-CdSb. Quite unusual feature opened in CdSb is that different types of hopping conductivity may take place in the same crystal depending on temperature, magnetic field or even orientation of crystal in magnetic field. Transport properties of undoped p-CdSb samples show that the anisotropy of the resistivity in weak and strong magnetic fields is determined completely by the anisotropy of the effective mass of the holes. Temperature and magnetic field dependence of the Hall coefficient and magnetoresistance is attributed to presence of two groups of holes with different concentrations and mobilities. The analysis demonstrates that below Tcr ~ 20 K and down to ~ 6 - 7 K the low-mobile carriers are itinerant holes with energy E2 ≈ 6 meV. The high-mobile carriers, at all temperatures T < Tcr, are holes activated thermally from a deeper acceptor band to itinerant states of a shallower acceptor band with energy E1 ≈ 3 meV. Analysis of temperature dependences of mobilities confirms the existence of the heavy-hole band or a non-equivalent maximum and two equivalent maxima of the light-hole valence band. Galvanomagnetic effects in n-CdSb reveal the existence of two groups of carriers. These are the electrons of a single minimum in isotropic conduction band and the itinerant electrons of the narrow impurity band, having at low temperatures the energies above the bottom of the conduction band. It is found that above this impurity band exists second impurity band of only localized states and the energy of both impurity bands depend on temperature so that they sink into the band gap when temperature is increased. The bands are splitted by the spin, and in strong magnetic fields the energy difference between them decreases and redistribution of the electrons between the two impurity bands takes place. Mobility of the conduction band carriers demonstrates that scattering in n-CdSb at low temperatures is strongly anisotropic. This is because of domination from scattering on the neutral impurity centers and increasing of the contribution to mobility from scattering by acoustic phonons when temperature increases. Metallic conductivity in zero or weak magnetic field is changed to activated conductivity with increasing of magnetic field. This exhibits a metal-insulator transition (MIT) induced by the magnetic field due to shift of the Fermi level from the interval of extended states to that of the localized states of the electron spectrum near the edge of the conduction band. The Mott variablerange hopping conductivity is observed in the low- and high-field intervals on the insulating side of the MIT. The results yield information about the density of states, the localization radius of the resonant impurity band with completely localized states and about the donor band. In high magnetic fields this band is separated from the conduction band and lies below the resonant impurity bands.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the financial impact of the enlargement of the European Union (EU) to include 10 new Central and Eastern European Nations (CEEN) on firms’ business and financial structures. To this end, we employ quantitative analytic techniques and financial ratios. In this context, we hope to discover whether firms in the new EU member States tend to converge with business in the Europe of the 15 in terms of the structure of firms’ financial statements. We examine the extent to which the increasing integration of the former may foster the convergence of productive structures. The methodology followed consists of an analysis of the evolution of 12 financial ratios in a sample of firms obtained from the AMADEUS data base. To that end, we perform a Dynamic Factor Analysis that identifies the determining factors of the joint evolution of deviations in the financial ratios with respect to the average value of firms in the EU-15. This analysis allows us to analyse the convergence in each of the CEEN nations with respect to the EU-15.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Blood pressures in persons of African descent exceed those of other racial/ethnic groups in the United States. Whether this trait is attributable to the genetic factors in African-origin populations, or a result of inadequately measured environmental exposures, such as racial discrimination, is not known. To study this question, we conducted a multisite comparative study of communities in the African diaspora, drawn from metropolitan Chicago, Kingston, Jamaica, rural Ghana, Cape Town, South Africa, and the Seychelles. METHODS: At each site, 500 participants between the age of 25 and 49 years, with approximately equal sex balance, were enrolled for a longitudinal study of energy expenditure and weight gain. In this study, we describe the patterns of blood pressure and hypertension observed at baseline among the sites. RESULTS: Mean SBP and DBP were very similar in the United States and South Africa in both men and women, although among women, the prevalence of hypertension was higher in the United States (24 vs. 17%, respectively). After adjustment for multiple covariates, relative to participants in the United States, SBP was significantly higher among the South Africans by 9.7 mmHg (P < 0.05) and significantly lower for each of the other sites: for example, Jamaica: -7.9 mmHg (P = 0.06), Ghana: -12.8 mmHg (P < 0.01) and Seychelles: -11.1 mmHg (P = 0.01). CONCLUSION: These data are consistent with prior findings of a blood pressure gradient in societies of the African diaspora and confirm that African-origin populations with lower social status in multiracial societies, such as the United States and South Africa, experience more hypertension than anticipated based on anthropometric and measurable socioeconomic risk factors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Puberty is a remarkable developmental process with the activation of the hypothalamic-pituitary-gonadal axis culminating in reproductive capacity. It is accompanied by cognitive, psychological, emotional, and sociocultural changes. There is wide variation in the timing of pubertal onset, and this process is affected by genetic and environmental influences. Disrupted puberty (delayed or absent) leading to hypogonadism may be caused by congenital or acquired etiologies and can have significant impact on both physical and psychosocial well-being. While adolescence is a time of growing autonomy and independence, it is also a time of vulnerability and thus, the impact of hypogonadism can have lasting effects. This review highlights the various forms of hypogonadism in adolescence and the clinical challenges in differentiating normal variants of puberty from pathological states. In addition, hormonal treatment, concerns regarding fertility, emotional support, and effective transition to adult care are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this Thesis I discuss the dynamics of the quantum Brownian motion model in harmonic potential. This paradigmatic model has an exact solution, making it possible to consider also analytically the non-Markovian dynamics. The issues covered in this Thesis are themed around decoherence. First, I consider decoherence as the mediator of quantum-to-classical transition. I examine five different definitions for nonclassicality of quantum states, and show how each definition gives qualitatively different times for the onset of classicality. In particular I have found that all characterizations of nonclassicality, apart from one based on the interference term in the Wigner function, result in a finite, rather than asymptotic, time for the emergence of classicality. Second, I examine the diverse effects which coupling to a non-Markovian, structured reservoir, has on our system. By comparing different types of Ohmic reservoirs, I derive some general conclusions on the role of the reservoir spectrum in both the short-time and the thermalization dynamics. Finally, I apply these results to two schemes for decoherence control. Both of the methods are based on the non-Markovian properties of the dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work emission, optical, electrical and magnetic properties of the d- and f- elements doped zinc selenide crystals were investigated within a wide temperature range. Doping was performed in various technological processes: during the growth by chemical vapor transport method; by thermal diffusion from the Bi or Zn melt. Concentration of the doping impurity in the crystals was controlled by amount of the dopant in the source material or by its concentration in the doping media. Special interest in the work was paid to the influence of the different concentrations of Cr and Yb impurities on ZnSe crystals’ properties, correlations between observed effects and similarities with the Ni, Mn and Gd dopants are analysed. Possibility of formation of the excitons bound to the doping d-ions was shown. In contrast to this, it was observed that f-elements do not bound excitons, but prevent formation of excitons bound to some uncontrolled impurities. A mechanism of Cr doping impurity interaction with background impurities and zinc selenide structural defects was proposed based on experimental data. An assumption about resonant energy transfer between double charged chromium ions and complexes based on crystals’ vacancy defects was made. A correlation between emission and magnetic properties of the d- ions doped samples was established. Based on this correlation a mechanism explaining the concentration quench of the emission was proposed. It was found that f-ions bind electrically active shallow and deep donor and acceptor states of background impurity to electrically neutral complexes. This may be observed as “purification” of ZnSe crystals by doping with the rare-earth elements, resulting i tendency of the properties of f-ion doped crystals to the properties of intrinsic crystals, but with smaller concentration of uncontrolled native and impurity defects. A possible interpretation of this effect was proposed. It was shown that selenium substituting impurities decrease efficiency of the Yb doping. Based on this experimental results an attempt to determine ytterbium ion surroundings in the crystal lattice was made. It was shown that co-doping of zinc selenide crystals with the d- and f- ions leads to the combination of the impurities influence on the material’s properties. On the basis of obtained data an interaction mechanism of the d- and f-elements co-dopants was proposed. Guided by the model of the ytterbium ion incorporation in the selenide sublattice of the ZnSe crystals, an assumption about stabilization of single charged chromium ions in the zinc sublattice crystal nodes, by means of formation of the local charge compensating clusters, was made.