967 resultados para Groundwater flow.
Resumo:
Dissertação de mest., Recursos Hídricos, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2011
Resumo:
This paper describes the palaeoweathering, cementation, clay minerals association and other closely related characteristics of central Portugal allostratigraphic Tertiary units (SLD's), that can be used for palaeoclimatic interpretation and palaeoenvironmental reconstruction. Lateral and vertical changes in palaeosols are of value for improving our understanding of the autocyclic and allocyclic controls on sediment acumulation in an alluvial basin, but they can also have stratigraphic importance. In some cases it is concluded that the geomorphological setting may have been more decisive than climatic conditions to the production of the palaeoweathering. During late Palaeogene (SLD7-8), surface and near-surface silicification were developed on tectonically stable land surfaces of minimal local relief under a semi-arid climate; groundwater flow was responsible for some eodiagenesis calcareous accumulations, with the neoformation of palygorskite. Conditions during the Miocene (SLD9-11) were favourable for the smectization of the metamorphic basement and arenization of granites. Intense rubefaction associated with basement conversion into clay (illite and kaolinite), is ascribed to internal drainage during late Messinian-Zanclean (SLD12). During Piacenzian (SLD13) intense kaolinization and hydromorphism are typical, reflecting a more humid and hot temperate climate and important Atlantic fluvial drainage. Later on (Gelasian-early Pleistocene ?; SLD14). more cold and dry conditicns are interpreted, at the beginning of the fluvial incision sage. Silica cementation is identified in the upper Eocence-Oligocene ? (SLD18; the major period of silicification), middle to upper Miocene (SLD10)and upper Tortonian-Messinian (SLD11); these occurrences are compatible with either arid or semi-arid conditions and the establishment of a flat landscape upon which a silcrete was developed.
Resumo:
A regional geochemical reconnaissance by bottom stream sediment sampling, has delineated an area of high metal content in the north central sector of the North Creek Watershed. Development of a geochemical model, relating to the relative chemical concentrations derived from the chemical analyses of bottom sediments, suspended sediments, stream waters and well waters collected from the north central sector, was designed to discover the source of the anomaly. Samples of each type of material were analysed by the A.R.L. Direct Reading Multi-element Emission Spectrograph Q.A. 137 for elements: Na, K, Ca, Sr, Si, As, Pb, Zn, Cd, Ni, Ti, Ag, Mo, Be, Fe, AI, Mn, Cu, Cr, P and Y. Anomalous results led to the discovery of a spring, the waters of which carried high concentrations of Zn, Cd, Pb, As, Ni, Ti, Ag, Sr and Si. In addition, the spring waters had high concentrations of Na, Ca, Mg, 504 , alkalinity, N03' and low concentrations of K, Cl and NH3. Increased specific conductivity (up to 2500 ~mho/cm.) was noted in the spring waters as well as increased calculated total dissolved solids (up to 2047 mg/l) and increased ionic strength (up to 0.06). On the other hand, decreases were noted in water temperature (8°C), pH (pH 7.2) and Eh (+.154 volts). Piezometer nests were installed in the anomalous north central sector of the watershed. In accordance with the slope of the piezometric surface from wells cased down to the till/bedrock interface, groundwater flow is directed from the recharge area (northwest of the anomaly) towards the artesian spring via the highly fractured dolostone aquifer of the Upper Eramosa Member. The bedrock aquifer is confined by the overlying Halton till and the underlying Lower Eramosa Member (Vinemount Shale). The oxidation of sphalerite and galena and the dissolution of gypsum, celestite, calcite, and dolomite within the Eramosa Member, contributed its highly, dissolved constituents to the circulating groundwaters, the age of which is greater than 20 years as determined by tritium dating. Groundwater is assumed to flow along the Vinemount Shale and discharge as an artesian spring where the shale unit becomes discontinuous. The anomaly is located on a topographic low where bedrock is close to the surface. Thermodynamic evaluation of the major ion speciation from the anomalous spring and surface waters, showed gypsum to be supersaturated in these spring waters. Downstream from the spring, the loss of carbon dioxide from the spring waters resulted in the supersaturation with respect to calcite, aragonite, magnesite and dolomite. This corresponded with increases in Eh (+.304 volts) and pH (pH 8.5) in the anomalous surface waters. In conclusion, the interaction of groundwaters within the highly, mineralized carbonate source (Eramosa Member) resulted in the characteristic Ca*Mg*HC03*S04 spring water at the anomalous site, which appeared to be the principle effect upon controlling the anomalous surface water chemistry.
Resumo:
Les changements climatiques mesurés dans le Nord-ouest canadien au cours du XXIe siècle entraînent une dégradation du pergélisol. Certaines des principales conséquences physiques sont la fonte de la glace interstitielle lors du dégel du pergélisol, l’affaissement du sol et la réorganisation des réseaux de drainage. L’effet est particulièrement marqué pour les routes bâties sur le pergélisol, où des dépressions et des fentes se créent de façon récurrente, rendant la conduite dangereuse. Des observations et mesures de terrain effectuées à Beaver Creek (Yukon) entre 2008 et 2011 ont démontré qu’un autre processus très peu étudié et quantifié dégradait le pergélisol de façon rapide, soit la chaleur transmise au pergélisol par l’écoulement souterrain. Suite aux mesures de terrain effectuées (relevé topographique, étude géotechnique du sol, détermination de la hauteur de la nappe phréatique et des chenaux d’écoulement préférentiels, température de l’eau et du sol, profondeur du pergélisol et de la couche active), des modèles de transfert de chaleur par conduction et par advection ont été produits. Les résultats démontrent que l’écoulement souterrain dans la couche active et les zones de talik contribue à la détérioration du pergélisol via différents processus de transfert de chaleur conducto-convectifs. L’écoulement souterrain devrait être pris en considération dans tous les modèles et scénarios de dégradation du pergélisol. Avec une bonne caractérisation de l’environnement, le modèle de transfert de chaleur élaboré au cours de la présente recherche est applicable dans d’autres zones de pergélisol discontinu.
Resumo:
This is an attempt to understand the important factors that control the occurrence, development and hydrochemical evolution of groundwater resources in sedimentary multi aquifer systems. The primary objective of this work is an integrated study of the hydrogeology and hydrochemistry with a view to elucidate the hydrochemical evolution of groundwater resources in the aquifer systems. The study is taken up in a typical coastal sedimentary aquifer system evolved under fluvio-marine environment in the coastal area of Kerala, known as the Kuttanad. The present study has been carried out to understand the aquifer systems, their inter relationships and evolution in the Kuttanad area of Kerala. The multi aquifer systems in the Kuttanad basin were formed from the sediments deposited under fluvio-marine and fluvial depositional environments and the marine transgressions and regressions in the geological past and palaeo climatic conditions influenced the hydrochemical environment in these aquifers. The evolution of groundwater and the hydrochemical processes involved in the formation of the present day water quality are elucidated from hydrochemical studies and the information derived from the aquifer geometry and hydraulic properties. Kuttanad area comprises of three types of aquifer systems namely phreatic aquifer underlain by Recent confined aquifer followed by Tertiary confined aquifers. These systems were formed by the deposition of sediments under fluvio-marine and fluvial environment. The study of the hydrochemical and hydraulic properties of the three aquifer systems proved that these three systems are separate entities. The phreatic aquifers in the area have low hydraulic gradients and high rejected recharge. The Recent confined aquifer has very poor hydraulic characteristics and recharge to this aquifer is very low. The Tertiary aquifer system is the most potential fresh water aquifer system in the area and the groundwater flow in the aquifer is converging towards the central part of the study area (Alleppey town) due to large scale pumping of water for water supply from this aquifer system. Mixing of waters and anthropogenic interferences are the dominant processes modifying the hydrochemistry in phreatic aquifers. Whereas, leaching of salts and cation exchange are the dominant processes modifying the hydrochemistry of groundwater in the confined aquifer system of Recent alluvium. Two significant chemical reactions modifying the hydrochemistry in the Recent aquifers are oxidation of iron in ferruginous clays which contributes hydrogen ions and the decomposition of organic matter in the aquifer system which consumes hydrogen ions. The hydrochemical environment is entirely different in the Tertiary aquifers as the groundwater in this aquifer system are palaeo waters evolved during various marine transgressions and regressions and these waters are being modified by processes of leaching of salts, cation exchange and chemical reactions under strong reducing environment. It is proved that the salinity observed in the groundwaters of Tertiary aquifers are not due to seawater mixing or intrusion, but due to dissolution of salts from the clay formations and ion exchange processes. Fluoride contamination in this aquifer system lacks a regional pattern and is more or less site specific in natureThe lowering of piezometric heads in the Tertiary aquifer system has developed as consequence of large scale pumping over a long period. Hence, puping from this aquifer system is to be regulated as a groundwater management strategy. Pumping from the Tertiary aquifers with high capacity pumps leads to well failures and mixing of saline water from the brackish zones. Such mixing zones are noticed from the hydrochemical studies. This is the major aquifer contamination in the Tertiary aquifer system which requires immediate attention. Usage of pumps above 10 HP capacities in wells taping Tertiary aquifers should be discouraged for sustainable development of these aquifers. The recharge areas need to be identified precisely for recharging the aquifer systems throughartificial means.
Resumo:
The ongoing depletion of the coastal aquifer in the Gaza strip due to groundwater overexploitation has led to the process of seawater intrusion, which is continually becoming a serious problem in Gaza, as the seawater has further invaded into many sections along the coastal shoreline. As a first step to get a hold on the problem, the artificial neural network (ANN)-model has been applied as a new approach and an attractive tool to study and predict groundwater levels without applying physically based hydrologic parameters, and also for the purpose to improve the understanding of complex groundwater systems and which is able to show the effects of hydrologic, meteorological and anthropogenic impacts on the groundwater conditions. Prediction of the future behaviour of the seawater intrusion process in the Gaza aquifer is thus of crucial importance to safeguard the already scarce groundwater resources in the region. In this study the coupled three-dimensional groundwater flow and density-dependent solute transport model SEAWAT, as implemented in Visual MODFLOW, is applied to the Gaza coastal aquifer system to simulate the location and the dynamics of the saltwater–freshwater interface in the aquifer in the time period 2000-2010. A very good agreement between simulated and observed TDS salinities with a correlation coefficient of 0.902 and 0.883 for both steady-state and transient calibration is obtained. After successful calibration of the solute transport model, simulation of future management scenarios for the Gaza aquifer have been carried out, in order to get a more comprehensive view of the effects of the artificial recharge planned in the Gaza strip for some time on forestall, or even to remedy, the presently existing adverse aquifer conditions, namely, low groundwater heads and high salinity by the end of the target simulation period, year 2040. To that avail, numerous management scenarios schemes are examined to maintain the ground water system and to control the salinity distributions within the target period 2011-2040. In the first, pessimistic scenario, it is assumed that pumping from the aquifer continues to increase in the near future to meet the rising water demand, and that there is not further recharge to the aquifer than what is provided by natural precipitation. The second, optimistic scenario assumes that treated surficial wastewater can be used as a source of additional artificial recharge to the aquifer which, in principle, should not only lead to an increased sustainable yield of the latter, but could, in the best of all cases, revert even some of the adverse present-day conditions in the aquifer, i.e., seawater intrusion. This scenario has been done with three different cases which differ by the locations and the extensions of the injection-fields for the treated wastewater. The results obtained with the first (do-nothing) scenario indicate that there will be ongoing negative impacts on the aquifer, such as a higher propensity for strong seawater intrusion into the Gaza aquifer. This scenario illustrates that, compared with 2010 situation of the baseline model, at the end of simulation period, year 2040, the amount of saltwater intrusion into the coastal aquifer will be increased by about 35 %, whereas the salinity will be increased by 34 %. In contrast, all three cases of the second (artificial recharge) scenario group can partly revert the present seawater intrusion. From the water budget point of view, compared with the first (do nothing) scenario, for year 2040, the water added to the aquifer by artificial recharge will reduces the amount of water entering the aquifer by seawater intrusion by 81, 77and 72 %, for the three recharge cases, respectively. Meanwhile, the salinity in the Gaza aquifer will be decreased by 15, 32 and 26% for the three cases, respectively.
Resumo:
This paper presents the results of a new investigation of the Guarani Aquifer System (SAG) in Sao Paulo state. New data were acquired about sedimentary framework, flow pattern, and hydrogeochemistry. The flow direction in the north of the state is towards the southwest and not towards the west as expected previously. This is linked to the absence of SAG outcrop in the northeast of Sao Paulo state. Both the underlying Piramboia Formation and the overlying Botucatu Formation possess high porosity (18.9% and 19.5%, respectively), which was not modified significantly by diagenetic changes. Investigation of sediments confirmed a zone of chalcedony cement close to the SAG outcrop and a zone of calcite cement in the deep confined zone. The main events in the SAG post-sedimentary history were: (1) adhesion of ferrugineous coatings on grains, (2) infiltration of clays in eodiagenetic stage, (3) regeneration of coatings with formation of smectites, (4) authigenic overgrowth of quartz and K-feldspar in advanced eodiagenetic stage, (5) bitumen cementation of Piramboia Formation in mesodiagenetic stage, (6) cementation by calcite in mesodiagenetic and telodiagenetic stages in Piramboia Formation, (7) formation of secondary porosity by dissolution of unstable minerals after appearance of hydraulic gradient and penetration of the meteoric water caused by the uplift of the Serra do Mar coastal range in the Late Cretaceous, (8) authigenesis of kaolinite and amorphous silica in unconfined zone of the SAG and cation exchange coupled with the dissolution of calcite at the transition between unconfined and confined zone, and (9) authigenesis of analcime in the confined SAG zone. The last two processes are still under operation. The deep zone of the SAG comprises an alkaline pH, Na-HCO(3) groundwater type with old water and enriched delta(13)C values (<-3.9), which evolved from a neutral pH, Ca-HCO(3) groundwater type with young water and depleted delta(13)C values (>-18.8) close to the SAG outcrop. This is consistent with a conceptual geochemical model of the SAG, suggesting dissolution of calcite driven by cation exchange, which occurs at a relatively narrow front recently moving downgradient at much slower rate compared to groundwater flow. More depleted values of delta(18)O in the deep confined zone close to the Parana River compared to values of relative recent recharged water indicate recharge occur during a period of cold climate. The SAG is a ""storage-dominated"" type of aquifer which has to be managed properly to avoid its overexploitation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
The study that resulted in this dissertation was developed at OU RNCE PETROBRAS, in Natal, which implemented a project of rational use and reuse of water, including use of wastewater from a Sewage Treatment Plant (STP) already in place, diluted with water from own wells for irrigation of green area of the building complex corporate enterprise. Establish a methodology that can serve as guidelines for future projects controlled reuse of water like this was the objective of this research. Been proposed, implemented and evaluated three instruments of sanitary and environmental control: 1) adaptation of sewage treatment plant and quality control of the treated effluent 2) analysis of soil-nutrient interaction in the irrigated area, 3) knowledge of the local hydrogeology, especially with regard to the direction of flow of the aquifer and location of collection wells of Companhia de Águas e Esgotos do Rio Grande do Norte (CAERN) situated in the surroundings. These instruments have proven sufficient and appropriate to ensure the levels of sanitary and environmental control proposed and studied, which were: a) control of water quality off the STP and the output of the irrigation reservoir, b) control of water quality sub surface soil and assessment of progress on soil composition, c) assessment of water quality in the aquifer. For this, we must: 1) establishing the monitoring plan of the STP and its effluent quality sampling points and defining the parameters of analysis, improve the functioning of that identifying the adequacy of flow and screening as the main factors of operational control, and increase the efficiency of the station to a relatively low cost, using additional filters, 2) propose, implement and adapt simple collectors to assess the quality of water percolating into the soil of the irrigated area, 3) determine the direction of groundwater flow in the area study and select the wells for monitoring of the aquifer.
Resumo:
Urban centers in Pitimbu Watershed use significant groundwater sources for public supply. Therefore, studies in Dunas Barreiras aquifer are relevant to expand knowledge about it and help manage water resources in the region. An essential tool for this management is the numerical modeling of groundwater flow. In this work, we developed a groundwater flow model for Pitimbu Watershed, using the Visual Modflow, version 2.7.1., which uses finite difference method for solving the govern equation of the dynamics of groundwater flow. We carried out the numerical simulation of steady-state model for the entire region of the basin. The model was built in the geographical, geomorphological and hydrogeological study of the area, which defined the boundary conditions and the parameters required for the numerical calculation. Owing to unavailability of current data based on monitoring of the aquifer it was not possible to calibrate the model. However, the simulation results showed that the overall water balance approached zero, therefore satisfying the equation for the three-dimensional behavior of the head water in steady state. Variations in aquifer recharge data were made to verify the impact of this contribution on the water balance of the system, especially in the scenario in which recharge due to drains and sinks was removed. According to the results generated by Visual Modflow occurred significantly hydraulic head lowering, ranging from 16,4 to 82 feet of drawdown. With the results obtained, it can be said that modeling is performed as a valid tool for the management of water resources in Pitimbu River Basin, and to support new studies
Resumo:
A contaminated site from a downstream municipal solid waste disposal site in Brazil was investigated by using a 3D resistivity and induced polarization (IP) imaging technique. This investigation purpose was to detect and delineate contamination plume produced by wastes. The area was selected based on previous geophysical investigations, and chemical analyses carried out in the site, indicating the presence of a contamination plume in the area. Resistivity model has successfully imaged waste presence (rho < 20 Omega m), water table depth, and groundwater flow direction. A conductive anomaly (rho < 20 Omega m) outside wastes placement was interpreted as a contamination plume. Chargeability model was also able to imaging waste presence (m > 31 mV/V), water table depth, and groundwater flow direction. A higher chargeability zone (m > 31 mV/V) outside wastes placement and following conductive anomaly was interpreted as a contamination plume. Normalized chargeability (MN = m/rho) confirmed polarizable zone, which could be an effect of a salinity increase (contamination plume), and the clay presence in the environment.
Resumo:
In Fazenda Belém oil field (Potiguar Basin, Ceará State, Brazil) occur frequently sinkholes and sudden terrain collapses associated to an unconsolidated sedimentary cap covering the Jandaíra karst. This research was carried out in order to understand the mechanisms of generation of these collapses. The main tool used was Ground Penetrating Radar (GPR). This work is developed twofold: one aspect concerns methodology improvements in GPR data processing whilst another aspect concerns the geological study of the Jandaíra karst. This second aspect was strongly supported both by the analysis of outcropping karst structures (in another regions of Potiguar Basin) and by the interpretation of radargrams from the subsurface karst in Fazenda Belém. It was designed and tested an adequate flux to process GPR data which was adapted from an usual flux to process seismic data. The changes were introduced to take into account important differences between GPR and Reflection Seismic methods, in particular: poor coupling between source and ground, mixed phase of the wavelet, low signal-to-noise ratio, monochannel acquisition, and high influence of wave propagation effects, notably dispersion. High frequency components of the GPR pulse suffer more pronounced effects of attenuation than low frequency components resulting in resolution losses in radargrams. In Fazenda Belém, there is a stronger need of an suitable flux to process GPR data because both the presence of a very high level of aerial events and the complexity of the imaged subsurface karst structures. The key point of the processing flux was an improvement in the correction of the attenuation effects on the GPR pulse based on their influence on the amplitude and phase spectra of GPR signals. In low and moderate losses dielectric media the propagated signal suffers significant changes only in its amplitude spectrum; that is, the phase spectrum of the propagated signal remains practically unaltered for the usual travel time ranges. Based on this fact, it is shown using real data that the judicious application of the well known tools of time gain and spectral balancing can efficiently correct the attenuation effects. The proposed approach can be applied in heterogeneous media and it does not require the precise knowledge of the attenuation parameters of the media. As an additional benefit, the judicious application of spectral balancing promotes a partial deconvolution of the data without changing its phase. In other words, the spectral balancing acts in a similar way to a zero phase deconvolution. In GPR data the resolution increase obtained with spectral balancing is greater than those obtained with spike and predictive deconvolutions. The evolution of the Jandaíra karst in Potiguar Basin is associated to at least three events of subaerial exposition of the carbonatic plataform during the Turonian, Santonian, and Campanian. In Fazenda Belém region, during the mid Miocene, the Jandaíra karst was covered by continental siliciclastic sediments. These sediments partially filled the void space associated to the dissolution structures and fractures. Therefore, the development of the karst in this region was attenuated in comparison to other places in Potiguar Basin where this karst is exposed. In Fazenda Belém, the generation of sinkholes and terrain collapses are controlled mainly by: (i) the presence of an unconsolidated sedimentary cap which is thick enough to cover completely the karst but with sediment volume lower than the available space associated to the dissolution structures in the karst; (ii) the existence of important structural of SW-NE and NW-SE alignments which promote a localized increase in the hydraulic connectivity allowing the channeling of underground water, thus facilitating the carbonatic dissolution; and (iii) the existence of a hydraulic barrier to the groundwater flow, associated to the Açu-4 Unity. The terrain collapse mechanisms in Fazenda Belém occur according to the following temporal evolution. The meteoric water infiltrates through the unconsolidated sedimentary cap and promotes its remobilization to the void space associated with the dissolution structures in Jandaíra Formation. This remobilization is initiated at the base of the sedimentary cap where the flow increases its abrasion due to a change from laminar to turbulent flow regime when the underground water flow reaches the open karst structures. The remobilized sediments progressively fill from bottom to top the void karst space. So, the void space is continuously migrated upwards ultimately reaching the surface and causing the sudden observed terrain collapses. This phenomenon is particularly active during the raining season, when the water table that normally is located in the karst may be temporarily located in the unconsolidated sedimentary cap
Resumo:
This work is the application of geophysical methods, using the Ground Penetrating Radar (GPR), with the objective of survey in a subsurface plume of contamination caused by a disabled gas station. The gas station is located on the Búzios beach in southern coast of the state to Rio Grande do Norte in an Area of Environmental Protection called Bonfim-Guaraíra. The interest to develop this work was the presence of contaminants (hydrocarbons) in a well located on the desktop, previously used for the abstraction of groundwater for residents living near the site. Were raised 15 geophysical survey lines totaling 775,48 lifting and installed 4 piezometer, to confirm the contamination and prepare a pluviometric map that helped in indicating the direction of local groundwater flow, thus showing the direction of movement of the probably plume of contamination. From the processing of the GPR lines was possible to identify two likely phases of contamination according to the classification proposed by Azambuja et al 2000, which are called phase absorbed and dissolved phase
Resumo:
We study the problem of the evolution of the free surface of a fluid in a saturated porous medium, bounded from below by a. at impermeable bottom, and described by the Laplace equation with moving-boundary conditions. By making use of a convenient conformal transformation, we show that the solution to this problem is equivalent to the solution of the Laplace equation on a fixed domain, with new variable coefficients, the boundary conditions. We use a kernel of the Laplace equation which allows us to write the Dirichlet-to-Neumann operator, and in this way we are able to find an exact differential-integral equation for the evolution of the free surface in one space dimension. Although not amenable to direct analytical solutions, this equation turns out to allow an easy numerical implementation. We give an explicit illustrative case at the end of the article.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This investigation was carried out within the Parana sedimentary basin and involved the sampling of 78 pumped tubular wells for evaluating the hydrochemistry and radioactivity due to the nuclides (238)U, (234)U, (222)Ra, (226)Ra, and (228)Ra in the Brazilian part of Guarani aquifer. Several significant correlations were found involving the geostatic pressure, for instance, specific flow rate, CO(3)(2-), SO(4)(2-) temperature, dissolved O(2), free CO(2), pH, redox potential Eh, conductivity, Na, HCO(3)-, CO(3)(2-) , SI(calcite), Cl(-), F(-), SO(4)(2-), and B. Carbonates precipitation was evidenced by inverse correlation between CO(3)(2-) and Ca, Mg, Sr, and Ba, whereas Na exhibited an opposite trend, dissolving rather than precipitating with increasing CO(3)(2-) concentration. An inverse correlation between 3 and K was found, possibly related to the increasing tendency of K to recombine with the thickness of the clayey layers. HCO(3)-played an important role on Na, Ca, Mg, and Sr dissolution. The dissolved U content and (234)U/(238)U activity ratio data were plotted on a two-dimensional diagram that was successfully utilized on identifying an unreported zone of U accumulation, though not necessarily of economic size and grade. The variability in chemical and radionuclides data indicated an important influence of the underlying Paleozoic sediments in the composition of waters from Guarani aquifer. The available data allowed estimate the groundwater residence time by two U-isotopes disequilibrium methods. Values of 45-61 ka were initially calculated, depending on the adopted porosity (15-20%), but a longer residence time (- 640 ka) was also estimated, which is more compatible with the hydraulic conductivity data in Guarani aquifer and groundwater flow velocity occurring at Milk River aquifer, Alberta, Canada. Such time range agrees with previously reported (14)C ages exceeding 30 ka BP at the more central parts of the Parana sedimentary basin. (c) 2005 Elsevier B.V. All rights reserved.