913 resultados para Gross output


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper analyses the efficiency and productivity growth of Electronics industry, which is considered one of the vibrant and rapidly growing manufacturing industry sub-sectors of India in the liberalization era since 1991. The main objective of the paper is to examine the extent and growth of Total Factor Productivity (TFP) and its components namely, Technical Efficiency Change (TEC) and Technological Progress (TP) and its contribution to total output growth. In this study, the electronics industry is broadly classified into communication equipments, computer hardware, consumer electronics and other electronics, with the purpose of performing a comparative analysis of productivity growth for each of these sub-sectors for the time period 1993-2004. The paper found that the sub-sectors have improved in terms of economies of scale and contribution of capital.The change in technical efficiency and technological progress moved in reverse directions. Three of the four industry witnessed growth in the output primarily due to TFPG and the contribution of input growth to output growth had been negative/negligible, except for Computer hardware where contribution from both input growth and TFPG to output growth were prominent. The paper explored the possible reasons that addressed the issue of low technical efficiency and technological progress in the industry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Reeb graph of a scalar function represents the evolution of the topology of its level sets. This paper describes a near-optimal output-sensitive algorithm for computing the Reeb graph of scalar functions defined over manifolds or non-manifolds in any dimension. Key to the simplicity and efficiency of the algorithm is an alternate definition of the Reeb graph that considers equivalence classes of level sets instead of individual level sets. The algorithm works in two steps. The first step locates all critical points of the function in the domain. Critical points correspond to nodes in the Reeb graph. Arcs connecting the nodes are computed in the second step by a simple search procedure that works on a small subset of the domain that corresponds to a pair of critical points. The paper also describes a scheme for controlled simplification of the Reeb graph and two different graph layout schemes that help in the effective presentation of Reeb graphs for visual analysis of scalar fields. Finally, the Reeb graph is employed in four different applications-surface segmentation, spatially-aware transfer function design, visualization of interval volumes, and interactive exploration of time-varying data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High voltage power supplies for radar applications are investigated, which are subjected to pulsed load (125 kHz and 10% duty cycle) with stringent specifications (<0.01% regulation, efficiency>85%, droop<0.5 V/micro-sec.). As good regulation and stable operation requires the converter to be switched at much higher frequency than the pulse load frequency, transformer poses serious problems of insulation failure and higher losses. Few converter topologies are proposed to tackle these problems. A study is made regarding the beat frequency oscillations that may exist with pulsed loading. It is illustrated with respect to the proposed converter topologies. Methods are proposed to eliminate or minimize these oscillations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A spring-mass-lever (SML) model is introduced in this paper for a single-input-single-output compliant mechanism to capture its static and dynamic behavior. The SML model is a reduced-order model, and its five parameters provide physical insight and quantify the stiffness and inertia(1) at the input and output ports as well as the transformation of force and displacement between the input and output. The model parameters can be determined with reasonable accuracy without performing dynamic or modal analysis. The paper describes two uses of the SML model: computationally efficient analysis of a system of which the compliant mechanism is a part; and design of compliant mechanisms for the given user-specifications. During design, the SML model enables determining the feasible parameter space of user-specified requirements, assessing the suitability of a compliant mechanism to meet the user-specifications and also selecting and/or re-designing compliant mechanisms from an existing database. Manufacturing constraints, material choice, and other practical considerations are incorporated into this methodology. A micromachined accelerometer and a valve mechanism are used as examples to show the effectiveness of the SML model in analysis and design. (C) 2012 Published by Elsevier Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Maximum likelihood (ML) algorithms, for the joint estimation of synchronisation impairments and channel in multiple input multiple output-orthogonal frequency division multiplexing (MIMO-OFDM) system, are investigated in this work. A system model that takes into account the effects of carrier frequency offset, sampling frequency offset, symbol timing error and channel impulse response is formulated. Cramer-Rao lower bounds for the estimation of continuous parameters are derived, which show the coupling effect among different impairments and the significance of the joint estimation. The authors propose an ML algorithm for the estimation of synchronisation impairments and channel together, using the grid search method. To reduce the complexity of the joint grid search in the ML algorithm, a modified ML (MML) algorithm with multiple one-dimensional searches is also proposed. Further, a stage-wise ML (SML) algorithm using existing algorithms, which estimate less number of parameters, is also proposed. Performance of the estimation algorithms is studied through numerical simulations and it is found that the proposed ML and MML algorithms exhibit better performance than SML algorithm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We undertake a systematic, direct numerical simulation of the twodimensional, Fourier-truncated, Gross-Pitaevskii equation to study the turbulent evolutions of its solutions for a variety of initial conditions and a wide range of parameters. We find that the time evolution of this system can be classified into four regimes with qualitatively different statistical properties. Firstly, there are transients that depend on the initial conditions. In the second regime, powerlaw scaling regions, in the energy and the occupation-number spectra, appear and start to develop; the exponents of these power laws and the extents of the scaling regions change with time and depend on the initial condition. In the third regime, the spectra drop rapidly for modes with wave numbers k > kc and partial thermalization takes place for modes with k < kc; the self-truncation wave number kc(t) depends on the initial conditions and it grows either as a power of t or as log t. Finally, in the fourth regime, complete thermalization is achieved and, if we account for finite-size effects carefully, correlation functions and spectra are consistent with their nontrivial Berezinskii-Kosterlitz-Thouless forms. Our work is a natural generalization of recent studies of thermalization in the Euler and other hydrodynamical equations; it combines ideas from fluid dynamics and turbulence, on the one hand, and equilibrium and nonequilibrium statistical mechanics on the other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we study the achievable rate region of two-user Gaussian broadcast channel (GBC) when the messages to be transmitted to both the users take values from finite signal sets and the received signal is quantized at both the users. We refer to this channel as quantized broadcast channel (QBC). We first observe that the capacity region defined for a GBC does not carry over as such to QBC. Also, we show that the optimal decoding scheme for GBC (i.e., high SNR user doing successive decoding and low SNR user decoding its message alone) is not optimal for QBC. We then propose an achievable rate region for QBC based on two different schemes. We present achievable rate region results for the case of uniform quantization at the receivers. We find that rotation of one of the user's input alphabet with respect to the other user's alphabet marginally enlarges the achievable rate region of QBC when almost equal powers are allotted to both the users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a second order sliding mode observer (SOSMO) design for discrete time uncertain linear multi-output system. The design procedure is effective for both matched and unmatched bounded uncertainties and/or disturbances. A second order sliding function and corresponding sliding manifold for discrete time system are defined similar to the lines of continuous time counterpart. A boundary layer concept is employed to avoid switching across the defined sliding manifold and the sliding trajectory is confined to a boundary layer once it converges to it. The condition for existence of convergent quasi-sliding mode (QSM) is derived. The observer estimation errors satisfying given stability conditions converge to an ultimate finite bound (within the specified boundary layer) with thickness O(T-2) where T is the sampling period. A relation between sliding mode gain and boundary layer is established for the existence of second order discrete sliding motion. The design strategy is very simple to apply and is demonstrated for three examples with different class of disturbances (matched and unmatched) to show the effectiveness of the design. Simulation results to show the robustness with respect to the measurement noise are given for SOSMO and the performance is compared with pseudo-linear Kalman filter (PLKF). (C) 2013 Published by Elsevier Ltd. on behalf of The Franklin Institute

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three possible contact conditions may prevail at a contact interface depending on the magnitude of normal and tangential loads, that is, stick condition, partial slip condition or gross sliding condition. Numerical techniques have been used to evaluate the stress field under partial slip and gross sliding condition. Cattaneo and Mindlin approach has been adapted to model partial slip condition. Shear strain energy density and normalized strain energy release rate have been evaluated at the surface and in the subsurface region. It is apparent from the present study that the shear strain energy density gives a fair prediction for the nucleation of damage, whereas the propagation of the crack is controlled by normalized strain energy release rate. Further, it has been observed that the intensity of damage strongly depends on coefficient of friction and contact conditions prevailing at the contact interface. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dead-time is introduced between the gating signals to the top and bottom switches in a voltage source inverter (VSI) leg, to prevent shoot through fault due to the finite turn-off times of IGBTs. The dead-time results in a delay when the incoming device is an IGBT, resulting in error voltage pulses in the inverter output voltage. This paper presents the design, fabrication and testing of an advanced gate driver, which eliminates dead-time and consequent output distortion. Here, the gating pulses are generated such that the incoming IGBT transition is not delayed and shoot-through is also prevented. The various logic units of the driver card and fault tolerance of the driver are verified through extensive tests on different topologies such as chopper, half-bridge and full-bridge inverter, and also at different conditions of load. Experimental results demonstrate the improvement in the load current waveform quality with the proposed circuit, on account of elimination of dead-time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Growing demand for urban built spaces has resulted in unprecedented exponential rise in production and consumption of building materials in construction. Production of materials requires significant energy and contributes to pollution and green house gas (GHG) emissions. Efforts aimed at reducing energy consumption and pollution involved with the production of materials fundamentally requires their quantification. Embodied energy (EE) of building materials comprises the total energy expenditure involved in the material production including all upstream processes such as raw material extraction and transportation. The current paper deals with EE of a few common building materials consumed in bulk in Indian construction industry. These values have been assessed based on actual industrial survey data. Current studies on EE of building materials lack agreement primarily with regard to method of assessment and energy supply assumptions (whether expressed in terms of end use energy or primary energy). The current paper examines the suitability of two basic methods; process analysis and input-output method and identifies process analysis as appropriate for EE assessment in the Indian context. A comparison of EE values of building materials in terms of the two energy supply assumptions has also been carried out to investigate the associated discrepancy. The results revealed significant difference in EE of materials whose production involves significant electrical energy expenditure relative to thermal energy use. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several operational aspects for thermal power plants in general are non-intuitive and involve simultaneous optimization of a number of operational parameters. In the case of solar operated power plants, it is even more difficult due to varying heat source temperatures induced by variability in insolation levels. This paper introduces a quantitative methodology for load regulation of a CO2 based Brayton cycle power plant using the `thermal efficiency and specific work output' coordinate system. The analysis shows that a transcritical CO2 cycle offers more flexibility under part load performance than the supercritical cycle in case of non-solar power plants. However, for concentrated solar power, where efficiency is important, supercritical CO2 cycle fares better than transcritical CO2 cycle. A number of empirical equations relating heat source temperature, high side pressure with efficiency and specific work output are proposed which could assist in generating control algorithms. (C) 2015 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent studies on small-scale power generation with the organic Rankine cycle suggest superior performance of positive displacement type of expanders compared to turbines. Scroll expanders in particular achieve high isentropic efficiencies due to lower leakage and frictional losses. Performance of scroll machines may be enhanced by the use of non-circular involute curves in place of the circular involutes resulting non-uniform wall thickness. In this paper, a detailed moment analysis is performed for such an expander having volumetric expansion ratio of 5 using thermodynamic models proposed earlier by one of the present authors. The working fluid considered in the power cycle is R-245fa with scroll inlet temperature of 125 degrees C for a gross power output of similar to 3.5 kW. The model developed in this paper is verified with an air scroll compressor available in the literature and then applied to an expander Prediction of small variation of moment with scroll motion recommends use of scroll expander without a flywheel over other positive displacement type of expanders, e.g. reciprocating, where a flywheel is an essential component.