991 resultados para Gradient Field Distortions


Relevância:

30.00% 30.00%

Publicador:

Resumo:

After sintering advanced ceramics, there are invariably distortions, caused in large part by the heterogeneous distribution of density gradients along the compacted piece. To correct distortions, machining is generally used to manufacture pieces within dimensional and geometric tolerances. Hence, narrow material removal limit conditions are applied, which minimize the generation of damage. Another alternative is machining the compacted piece before sintering, called the green ceramic stage, which allows machining without damage to mechanical strength. Since the greatest concentration of density gradients is located in the outer-most layers of the compacted piece, this study investigated the removal of different allowance values by means of green machining. The output variables are distortion after sintering, tool wear, cutting force, and the surface roughness of the green ceramics and the sintered ones. The following results have been noted: less distortion is verified in the sintered piece after 1mm allowance removal; and the higher the tool wear the worse the surface roughness of both green and sintered pieces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the field of photonics, two new types of material structures, photonic crystals and metamaterials, are presently of great interest. Both are studied in the present work, which focus on planar magnetic materials in the former and planar gradient metamaterials in the latter. These planar periodic structures are easy to handle and integrate into optical systems. The applications are promising field for future optical telecommunication systems and give rise to new optical, microwave and radio technologies. The photonic crystal part emphasizes the utilization of magnetic material based photonic crystals due to its remarkable magneto-optical characteristics. Bandgaps tuning by magnetic field in bismuth-gadolinium-substituted lutetium iron garnet (Bi0.8 Gd0.2 Lu2.0 Fe5 O12) based one- dimensional photonic crystals are investigated and demonstrated in this work. Magnetic optical switches are fabricated and tested. Waveguide formulation for band structure in magneto photonic crystals is developed. We also for the first time demonstrate and test two- dimensional magneto photonic crystals optical. We observe multi-stopbands in two- dimensional photonic waveguide system and study the origin of multi-stopbands. The second part focus on studying photonic metamaterials and planar gradient photonic metamaterial design. We systematically study the effects of varying the geometry of the fishnet unit cell on the refractive index in optical frequency. It is the first time to design and demonstrate the planar gradient structure in the high optical frequency. Optical beam bending using planar gradient photonic metamaterials is observed. The technologies needed for the fabrication of the planar gradient photonic metamaterials are investigated. Beam steering devices, shifter, gradient optical lenses and etc. can be derived from this design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Arctic landscapes have visually striking patterns of small polygons, circles, and hummocks. The linkages between the geophysical and biological components of these systems and their responses to climate changes are not well understood. The "Biocomplexity of Patterned Ground Ecosystems" project examined patterned-ground features (PGFs) in all five Arctic bioclimate subzones along an 1800-km trans-Arctic temperature gradient in northern Alaska and northwestern Canada. This paper provides an overview of the transect to illustrate the trends in climate, PGFs, vegetation, n-factors, soils, active-layer depth, and frost heave along the climate gradient. We emphasize the thermal effects of the vegetation and snow on the heat and water fluxes within patterned-ground systems. Four new modeling approaches build on the theme that vegetation controls microscale soil temperature differences between the centers and margins of the PGFs, and these in turn drive the movement of water, affect the formation of aggradation ice, promote differential soil heave, and regulate a host of system propel-ties that affect the ability of plants to colonize the centers of these features. We conclude with an examination of the possible effects of a climate wan-ning on patterned-ground ecosystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The induction of activity of the enzyme nitrate reductase (NR, EC 1.6.6.1, 1.6.6.2) in needles of Norway spruce (Picea abies[L.] Karst.) by nitrogen dioxide (NO2) was studied under laboratory and field conditions. In fumigation chambers an increase in nitrate reductase activity (NRA) was detected 4 h after the start of the NO2 treatment. During the first 2 days with 100 µg NO2 m−3, NRA reached a constant level and did not change during the following 4 days. At the same level of NO2, NRA was lower in needles from trees grown on NPK-fertilized soil than on non-fertilized soil. After the transfer of spruce trees from fertilized soil to NPK-rich nutrient solution, NRA was transiently increased. This effect was assigned to root injuries causing nitrate transport to the shoot and subsequent induction of NRA. Neither trees on fertilized soil nor trees transferred to NPK-poor nutrient solution had increased NRA unless NO2 was provided. The NO2 gradient in the vicinity of a highway was used to test the long-term effect of elevated levels of NO2 on needle NRA of potted and field-grown spruce trees. Compared with less polluted sites, permanently increased NRAs were detected when NO2 concentrations were above 20 µg m−3. Controls of field measurements some 10 years after the introduction of catalytic converters in cars showed no significant change neither in NO2 levels nor in the decreasing NRA of spruce needles with the distance from the highway.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A portable Fourier transform spectrometer (FTS), model EM27/SUN, was deployed onboard the research vessel Polarstern to measure the column-average dry air mole fractions of carbon dioxide (XCO2) and methane (XCH4) by means of direct sunlight absorption spectrometry. We report on technical developments as well as data calibration and reduction measures required to achieve the targeted accuracy of fractions of a percent in retrieved XCO2 and XCH4 while operating the instrument under field conditions onboard the moving platform during a 6-week cruise on the Atlantic from Cape Town (South Africa, 34° S, 18° E; 5 March 2014) to Bremerhaven (Germany, 54° N, 19° E; 14 April 2014). We demonstrate that our solar tracker typically achieved a tracking precision of better than 0.05° toward the center of the sun throughout the ship cruise which facilitates accurate XCO2 and XCH4 retrievals even under harsh ambient wind conditions. We define several quality filters that screen spectra, e.g., when the field of view was partially obstructed by ship structures or when the lines-of-sight crossed the ship exhaust plume. The measurements in clean oceanic air, can be used to characterize a spurious air-mass dependency. After the campaign, deployment of the spectrometer alongside the TCCON (Total Carbon Column Observing Network) instrument at Karlsruhe, Germany, allowed for determining a calibration factor that makes the entire campaign record traceable to World Meteorological Organization (WMO) standards. Comparisons to observations of the GOSAT satellite and concentration fields modeled by the European Centre for Medium-Range Weather Forecasts (ECMWF) Copernicus Atmosphere Monitoring Service (CAMS) demonstrate that the observational setup is well suited to provide validation opportunities above the ocean and along interhemispheric transects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The paper focuses on studies of snow-pit samples and shallow firn cores taken during the 1995-96 and 1996-97 field seasons at Amundsenisen, Dronning Maud Land, Antarctica. The dating of the firn is based on the artificial tritium distribution in the snow cover and on several reference horizons identified by electrical measurements. The early 1964 through 1965 horizon is marked by the deposition of sulfate released to the atmosphere during the eruption of the Agung volcano in March 1963; this horizon was detected by dielectric profiling and electrical conductivity measurements; the proof by chemical analysis has still to be seen. At the ten investigated sites on Amundsenisen the 1964-65 horizon was identified 4.1-5.7 m below the surface. The accumulation rates on Amundsenisen are 41-91 kg/m**2/a. The cores are up to 100 years old. A relationship between isotope content and the mean air temperature on a regional scale can be based on measurements of firn temperature at 10 m depth at the drilling sites. Between Neumayer station at the coast and Heimefrontfjella, the temperature gradient of the deuterium content is 9.6 per mil/K. South of Heimefrontfjella, on the Amundsenisen plateau, it is only 5.5 per mil/K. Time series of yearly accumulation rates show no significant trend. For the isotope records a significant trend to higher values with gradients of 0.1-0.2 d2H per mil/a can be seen in five of the ten time series.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Changes in phenotypic traits, such as mollusc shells, are indicative of variations in selective pressure along environmental gradients. Recently, increased sea surface temperature (SST) and ocean acidification (OA) due to increased levels of carbon dioxide in the seawater have been described as selective agents that may affect the biological processes underlying shell formation in calcifying marine organisms. The benthic snail Concholepas concholepas (Muricidae) is widely distributed along the Chilean coast, and so is naturally exposed to a strong physical-chemical latitudinal gradient. In this study, based on elliptical Fourier analysis, we assess changes in shell morphology (outlines analysis) in juvenile C. concholepas collected at northern (23°S), central (33°S) and southern (39°S) locations off the Chilean coast. Shell morphology of individuals collected in northern and central regions correspond to extreme morphotypes, which is in agreement with both the observed regional differences in the shell apex outlines, the high reclassification success of individuals (discriminant function analysis) collected in these regions, and the scaling relationship in shell weight variability among regions. However, these extreme morphotypes showed similar patterns of mineralization of calcium carbonate forms (calcite and aragonite). Geographical variability in shell shape of C. concholepas described by discriminant functions was partially explained by environmental variables (pCO2, SST). This suggests the influence of corrosive waters, such as upwelling and freshwaters penetrating into the coastal ocean, upon spatial variation in shell morphology. Changes in the proportion of calcium carbonate forms precipitated by C. concholepas across their shells and its susceptibility to corrosive coastal waters are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A natural pH gradient caused by marine CO2 seeps off Vulcano Island (Italy) was used to assess the effects of ocean acidification on coccolithophores, which are abundant planktonic unicellular calcifiers. Such seeps are used as natural laboratories to study the effects of ocean acidification on marine ecosystems, since they cause long-term changes in seawater carbonate chemistry and pH, exposing the organisms to elevated CO2 concentrations and therefore mimicking future scenarios. Previous work at CO2 seeps has focused exclusively on benthic organisms. Here we show progressive depletion of 27 coccolithophore species, in terms of cell concentrations and diversity, along a calcite saturation gradient from Omega calcite 6.4 to <1. Water collected close to the main CO2 seeps had the highest concentrations of malformed Emiliania huxleyi. These observations add to a growing body of evidence that ocean acidification may benefit some algae but will likely cause marine biodiversity loss, especially by impacting calcifying species, which are affected as carbonate saturation falls.