967 resultados para Gradient Descent method


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This work presents a procedure for electric load forecasting based on adaptive multilayer feedforward neural networks trained by the Backpropagation algorithm. The neural network architecture is formulated by two parameters, the scaling and translation of the postsynaptic functions at each node, and the use of the gradient-descendent method for the adjustment in an iterative way. Besides, the neural network also uses an adaptive process based on fuzzy logic to adjust the network training rate. This methodology provides an efficient modification of the neural network that results in faster convergence and more precise results, in comparison to the conventional formulation Backpropagation algorithm. The adapting of the training rate is effectuated using the information of the global error and global error variation. After finishing the training, the neural network is capable to forecast the electric load of 24 hours ahead. To illustrate the proposed methodology it is used data from a Brazilian Electric Company. © 2003 IEEE.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Matemática - IBILCE

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

[EN] The aim of this work is to propose a model for computing the optical flow in a sequence of images. We introduce a new temporal regularizer that is suitable for large displacements. We propose to decouple the spatial and temporal regularizations to avoid an incongruous formulation. For the spatial regularization we use the Nagel-Enkelmann operator and a newly designed temporal regularization. Our model is based on an energy functional that yields a partial differential equation (PDE). This PDE is embedded into a multipyramidal strategy to recover large displacements. A gradient descent technique is applied at each scale to reach the minimum.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The brown rot fungi belong to a group of fungal pathogens that causes considerable damage to cultivated fruits trees, particularly stone fruits and apples in the temperate regions of the World and during the postharvest with an important economic impact. In particular in Italy, it is important to monitor the Monilinia population to control economic losses associated to the peach and nectarine market. This motivates the research steps presented in this dissertation on Monilinia Italian isolates. The Monilinia species collected from stone fruits have been identified using molecular analysis based on specific primers. The relevant role of M. fructicola was confirmed and, for the first time, it was found also on apple fruits. To avoid the development of resistant strains and implement valid treatment strategies, the understanding of the fruit natural resistance during different developmental stages and the assessment of the Monilinia sensitivity/resistance to fungicides are required. The relationship between the inhibition spots and the phenolic compounds in peach fruit peel was highlighted in this research. Three methods were used to assess isolate resistance/sensitivity, the amended medium, the Spiral Gradient Endpoint Method (SGD) and the Alamar Blue method. The PCR was used to find possible mutation points in the b-tubulin gene that is responsible for fungicide resistance. Interestingly, no mutation points were observed in resistant M. laxa isolates, suggesting that the resistance could be stimulated by environmental factors. This lead to the study of the effect of the temperature on the resistance and the preliminary results of in vitro tests showed that maximum inhibition was observed at 30°C.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An image processing observational technique for the stereoscopic reconstruction of the wave form of oceanic sea states is developed. The technique incorporates the enforcement of any given statistical wave law modeling the quasi Gaussianity of oceanic waves observed in nature. The problem is posed in a variational optimization framework, where the desired wave form is obtained as the minimizer of a cost functional that combines image observations, smoothness priors and a weak statistical constraint. The minimizer is obtained combining gradient descent and multigrid methods on the necessary optimality equations of the cost functional. Robust photometric error criteria and a spatial intensity compensation model are also developed to improve the performance of the presented image matching strategy. The weak statistical constraint is thoroughly evaluated in combination with other elements presented to reconstruct and enforce constraints on experimental stereo data, demonstrating the improvement in the estimation of the observed ocean surface.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present a non-conformal metric that generalizes the geodesic active contours approach for image segmentation. The new metric is obtained by adding to the Euclidean metric an additional term that penalizes the misalignment of the curve with the image gradient and multiplying the resulting metric by a conformal factor that depends on the edge intensity. In this way, a closer fitting to the edge direction results. The provided experimental results address the computation of the geodesics of the new metric by applying a gradient descent to externally provided curves. The good performance of the proposed techniques is demonstrated in comparison with other active contours methods.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evolutionary algorithms perform optimization using a population of sample solution points. An interesting development has been to view population-based optimization as the process of evolving an explicit, probabilistic model of the search space. This paper investigates a formal basis for continuous, population-based optimization in terms of a stochastic gradient descent on the Kullback-Leibler divergence between the model probability density and the objective function, represented as an unknown density of assumed form. This leads to an update rule that is related and compared with previous theoretical work, a continuous version of the population-based incremental learning algorithm, and the generalized mean shift clustering framework. Experimental results are presented that demonstrate the dynamics of the new algorithm on a set of simple test problems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple method for training the dynamical behavior of a neural network is derived. It is applicable to any training problem in discrete-time networks with arbitrary feedback. The algorithm resembles back-propagation in that an error function is minimized using a gradient-based method, but the optimization is carried out in the hidden part of state space either instead of, or in addition to weight space. Computational results are presented for some simple dynamical training problems, one of which requires response to a signal 100 time steps in the past.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We present an analytic solution to the problem of on-line gradient-descent learning for two-layer neural networks with an arbitrary number of hidden units in both teacher and student networks. The technique, demonstrated here for the case of adaptive input-to-hidden weights, becomes exact as the dimensionality of the input space increases.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the effect of two types of noise, data noise and model noise, in an on-line gradient-descent learning scenario for general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labeled by a two-layer teacher network with an arbitrary number of hidden units. Data is then corrupted by Gaussian noise affecting either the output or the model itself. We examine the effect of both types of noise on the evolution of order parameters and the generalization error in various phases of the learning process.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We complement recent advances in thermodynamic limit analyses of mean on-line gradient descent learning dynamics in multi-layer networks by calculating fluctuations possessed by finite dimensional systems. Fluctuations from the mean dynamics are largest at the onset of specialisation as student hidden unit weight vectors begin to imitate specific teacher vectors, increasing with the degree of symmetry of the initial conditions. In light of this, we include a term to stimulate asymmetry in the learning process, which typically also leads to a significant decrease in training time.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We study the effect of regularization in an on-line gradient-descent learning scenario for a general two-layer student network with an arbitrary number of hidden units. Training examples are randomly drawn input vectors labelled by a two-layer teacher network with an arbitrary number of hidden units which may be corrupted by Gaussian output noise. We examine the effect of weight decay regularization on the dynamical evolution of the order parameters and generalization error in various phases of the learning process, in both noiseless and noisy scenarios.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The influence of biases on the learning dynamics of a two-layer neural network, a normalized soft-committee machine, is studied for on-line gradient descent learning. Within a statistical mechanics framework, numerical studies show that the inclusion of adjustable biases dramatically alters the learning dynamics found previously. The symmetric phase which has often been predominant in the original model all but disappears for a non-degenerate bias task. The extended model furthermore exhibits a much richer dynamical behavior, e.g. attractive suboptimal symmetric phases even for realizable cases and noiseless data.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An adaptive back-propagation algorithm parameterized by an inverse temperature 1/T is studied and compared with gradient descent (standard back-propagation) for on-line learning in two-layer neural networks with an arbitrary number of hidden units. Within a statistical mechanics framework, we analyse these learning algorithms in both the symmetric and the convergence phase for finite learning rates in the case of uncorrelated teachers of similar but arbitrary length T. These analyses show that adaptive back-propagation results generally in faster training by breaking the symmetry between hidden units more efficiently and by providing faster convergence to optimal generalization than gradient descent.