941 resultados para Google, String matching
Resumo:
This paper outlines existing matching diagnostics, which may be used for identifying invalid matches and estimating the probability of a correct match. In addition, it proposes a new diagnostic for error prediction which can be used with the rank and census transforms. Both the existing and the new diagnostics have been evaluated and compared for a number of test images. In each case, a confidence estimate was computed for every location of the disparity map, and disparities having a low confidence estimate removed from the disparity map. Collectively, these confidence estimates may be termed a confidence map. Such information would be useful for potential applications of stereo vision such as automation and navigation.
Resumo:
The mining environment, being complex, irregular, and time-varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two nonparametric transforms, namely, rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. The objective is to produce a stereo vision sensor suited to close-range scenes consisting primarily of rocks. This sensor should be able to produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this investigation. A number of area based matching metrics have been implemented, including the SAD, SSD, NCC, and their zero-meaned versions. The NCC and the zero meaned SAD and SSD were found to produce the disparity maps with the highest proportion of valid matches. The plain SAD and SSD were the least computationally expensive, due to all their operations taking place in integer arithmetic, however, they were extremely sensitive to radiometric distortion. Non-parametric techniques for matching, in particular, the rank and the census transform, have also been investigated. The rank and census transforms were found to be robust with respect to radiometric distortion, as well as being able to produce disparity maps with a high proportion of valid matches. An additional advantage of both the rank and the census transform is their amenability to fast hardware implementation.
Resumo:
The mining environment presents a challenging prospect for stereo vision. Our objective is to produce a stereo vision sensor suited to close-range scenes consisting mostly of rocks. This sensor should produce a dense depth map within real-time constraints. Speed and robustness are of foremost importance for this application. This paper compares a number of stereo matching algorithms in terms of robustness and suitability to fast implementation. These include traditional area-based algorithms, and algorithms based on non-parametric transforms, notably the rank and census transforms. Our experimental results show that the rank and census transforms are robust with respect to radiometric distortion and introduce less computational complexity than conventional area-based matching techniques.
Resumo:
Traditional area-based matching techniques make use of similarity metrics such as the Sum of Absolute Differences(SAD), Sum of Squared Differences (SSD) and Normalised Cross Correlation (NCC). Non-parametric matching algorithms such as the rank and census rely on the relative ordering of pixel values rather than the pixels themselves as a similarity measure. Both traditional area-based and non-parametric stereo matching techniques have an algorithmic structure which is amenable to fast hardware realisation. This investigation undertakes a performance assessment of these two families of algorithms for robustness to radiometric distortion and random noise. A generic implementation framework is presented for the stereo matching problem and the relative hardware requirements for the various metrics investigated.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper assesses the suitability of a number of matching techniques for use in a stereo vision sensor for close range scenes consisting primarily of rocks. These include traditional area-based matching metrics, and non-parametric transforms, in particular, the rank and census transforms. Experimental results show that the rank and census transforms exhibit a number of clear advantages over area-based matching metrics, including their low computational complexity, and robustness to certain types of distortion.
Resumo:
The mining environment, being complex, irregular and time varying, presents a challenging prospect for stereo vision. For this application, speed, reliability, and the ability to produce a dense depth map are of foremost importance. This paper evaluates a number of matching techniques for possible use in a stereo vision sensor for mining automation applications. Area-based techniques have been investigated because they have the potential to yield dense maps, are amenable to fast hardware implementation, and are suited to textured scenes. In addition, two non-parametric transforms, namely, the rank and census, have been investigated. Matching algorithms using these transforms were found to have a number of clear advantages, including reliability in the presence of radiometric distortion, low computational complexity, and amenability to hardware implementation.
Resumo:
The authors present a qualitative and quantitative comparison of various similarity measures that form the kernel of common area-based stereo-matching systems. The authors compare classical difference and correlation measures as well as nonparametric measures based on the rank and census transforms for a number of outdoor images. For robotic applications, important considerations include robustness to image defects such as intensity variation and noise, the number of false matches, and computational complexity. In the absence of ground truth data, the authors compare the matching techniques based on the percentage of matches that pass the left-right consistency test. The authors also evaluate the discriminatory power of several match validity measures that are reported in the literature for eliminating false matches and for estimating match confidence. For guidance applications, it is essential to have and estimate of confidence in the three-dimensional points generated by stereo vision. Finally, a new validity measure, the rank constraint, is introduced that is capable of resolving ambiguous matches for rank transform-based matching.
Resumo:
A fundamental problem faced by stereo matching algorithms is the matching or correspondence problem. A wide range of algorithms have been proposed for the correspondence problem. For all matching algorithms, it would be useful to be able to compute a measure of the probability of correctness, or reliability of a match. This paper focuses in particular on one class for matching algorithms, which are based on the rank transform. The interest in these algorithms for stereo matching stems from their invariance to radiometric distortion, and their amenability to fast hardware implementation. This work differs from previous work in that it derives, from first principles, an expression for the probability of a correct match. This method was based on an enumeration of all possible symbols for matching. The theoretical results for disparity error prediction, obtained using this method, were found to agree well with experimental results. However, disadvantages of the technique developed in this chapter are that it is not easily applicable to real images, and also that it is too computationally expensive for practical window sizes. Nevertheless, the exercise provides an interesting and novel analysis of match reliability.
Resumo:
The only effective method of Fiber Bragg Grating (FBG) strain modulation has been by changing the distance between its two fixed ends. We demonstrate an alternative being more sensitive to force based on the nonlinear amplification relationship between a transverse force applied to a stretched string and its induced axial force. It may improve the sensitivity and size of an FBG force sensor, reduce the number of FBGs needed for multi-axial force monitoring, and control the resonant frequency of an FBG accelerometer.
Resumo:
In order to comprehend user information needs by concepts, this paper introduces a novel method to match relevance features with ontological concepts. The method first discovers relevance features from user local instances. Then, a concept matching approach is developed for matching these features to accurate concepts in a global knowledge base. This approach is significant for the transition of informative descriptor and conceptional descriptor. The proposed method is elaborately evaluated by comparing against three information gathering baseline models. The experimental results shows the matching approach is successful and achieves a series of remarkable improvements on search effectiveness.
Resumo:
Google Android, Google's new product and its first attempt to enter the mobile market, might have an equal impact on mobile users like Apple's hyped product, the iPhone. In this Technical report we are going to present the Google Android platform, what Android is, describe why it might be considered as a worthy rival to Apple's iPhone. We will describe parts of its internals, take a look "under the hood" while explaining components of the underlying operating system. We will show how to develop applications for this platform, which difficulties a developer might have to face, and how developers can possibly use other programming languages to develop for Android than the propagated language Java.
Resumo:
Data structures such as k-D trees and hierarchical k-means trees perform very well in approximate k nearest neighbour matching, but are only marginally more effective than linear search when performing exact matching in high-dimensional image descriptor data. This paper presents several improvements to linear search that allows it to outperform existing methods and recommends two approaches to exact matching. The first method reduces the number of operations by evaluating the distance measure in order of significance of the query dimensions and terminating when the partial distance exceeds the search threshold. This method does not require preprocessing and significantly outperforms existing methods. The second method improves query speed further by presorting the data using a data structure called d-D sort. The order information is used as a priority queue to reduce the time taken to find the exact match and to restrict the range of data searched. Construction of the d-D sort structure is very simple to implement, does not require any parameter tuning, and requires significantly less time than the best-performing tree structure, and data can be added to the structure relatively efficiently.
Resumo:
An algorithm for computing dense correspondences between images of a stereo pair or image sequence is presented. The algorithm can make use of both standard matching metrics and the rank and census filters, two filters based on order statistics which have been applied to the image matching problem. Their advantages include robustness to radiometric distortion and amenability to hardware implementation. Results obtained using both real stereo pairs and a synthetic stereo pair with ground truth were compared. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.
Resumo:
The rank and census are two filters based on order statistics which have been applied to the image matching problem for stereo pairs. Advantages of these filters include their robustness to radiometric distortion and small amounts of random noise, and their amenability to hardware implementation. In this paper, a new matching algorithm is presented, which provides an overall framework for matching, and is used to compare the rank and census techniques with standard matching metrics. The algorithm was tested using both real stereo pairs and a synthetic pair with ground truth. The rank and census filters were shown to significantly improve performance in the case of radiometric distortion. In all cases, the results obtained were comparable to, if not better than, those obtained using standard matching metrics. Furthermore, the rank and census have the additional advantage that their computational overhead is less than these metrics. For all techniques tested, the difference between the results obtained for the synthetic stereo pair, and the ground truth results was small.