958 resultados para Glycosylated hemoglobin A
Resumo:
Intestinal microfold (M) cells possess a high transcytosis capacity and are able to transport a broad range of materials including particulate antigens, soluble macromolecules, and pathogens from the intestinal lumen to inductive sites of the mucosal immune system. M cells are also the primary pathway for delivery of secretory IgA (SIgA) to the gut-associated lymphoid tissue. However, although the consequences of SIgA uptake by M cells are now well known and described, the mechanisms whereby SIgA is selectively bound and taken up remain poorly understood. Here we first demonstrate that both the Cα1 region and glycosylation, more particularly sialic acid residues, are involved in M cell-mediated reverse transcytosis. Second, we found that SIgA is taken up by M cells via the Dectin-1 receptor, with the possible involvement of Siglec-5 acting as a co-receptor. Third, we establish that transcytosed SIgA is taken up by mucosal CX3CR1⁺ dendritic cells (DCs) via the DC-SIGN receptor. Fourth, we show that mucosal and systemic antibody responses against the HIV p24-SIgA complexes administered orally is strictly dependent on the expression of Dectin-1. Having deciphered the mechanisms leading to specific targeting of SIgA-based Ag complexes paves the way to the use of such a vehicle for mucosal vaccination against various infectious diseases.
Resumo:
The in vivo effects of Diaspirin Crosslinked Hemoglobin (DCLHb, Baxter Healthcare Corp.) on hematology and biochemistry are unknown. This study includes 6 calves (71.2+/-1.3 kg). In each animal a total of 2 litres of blood was exchanged for the same amount of hydroxylethyl starch (Haes, Fresenius) (n=3) or DCLHb (n=3), which is equivalent to 28cc/kg of blood substitute, over a period of 5 hours. The animals were allowed to survive 7 days. Blood samples were taken hourly during the perfusion protocol, at postoperative day (POD) 1, 2 and 7. ANOVA test was used for repeated measurements. Blood cell profiles were similar in both groups. Peak methemoglobinemia was 4.2% in the DCLHb group. Osmolarity was significantly higher in the DCLHb group with the greatest difference at POD 1 and 2. Postmortem analysis of the major organs did not show any sign of hemoglobin deposit in the DCLHb group. In the given setup DCLHb can be administered in a large quantity with good hematological tolerance and without any deposits in major organs. A prolonged plasma expander effect was observed.
Resumo:
The aim of this study was to assess a population of patients with diabetes mellitus by means of the INTERMED, a classification system for case complexity integrating biological, psychosocial and health care related aspects of disease. The main hypothesis was that the INTERMED would identify distinct clusters of patients with different degrees of case complexity and different clinical outcomes. Patients (n=61) referred to a tertiary reference care centre were evaluated with the INTERMED and followed 9 months for HbA1c values and 6 months for health care utilisation. Cluster analysis revealed two clusters: cluster 1 (62%) consisting of complex patients with high INTERMED scores and cluster 2 (38%) consisting of less complex patients with lower INTERMED. Cluster 1 patients showed significantly higher HbA1c values and a tendency for increased health care utilisation. Total INTERMED scores were significantly related to HbA1c and explained 21% of its variance. In conclusion, different clusters of patients with different degrees of case complexity were identified by the INTERMED, allowing the detection of highly complex patients at risk for poor diabetes control. The INTERMED therefore provides an objective basis for clinical and scientific progress in diabetes mellitus. Ongoing intervention studies will have to confirm these preliminary data and to evaluate if management strategies based on the INTERMED profiles will improve outcomes.
Resumo:
BACKGROUND: In a simulation based on a pharmacokinetic model we demonstrated that increasing the erythropoiesis stimulating agents (ESAs) half-life or shortening their administration interval decreases hemoglobin variability. The benefit of reducing the administration interval was however lessened by the variability induced by more frequent dosage adjustments. The purpose of this study was to analyze the reticulocyte and hemoglobin kinetics and variability under different ESAs and administration intervals in a collective of chronic hemodialysis patients. METHODS: The study was designed as an open-label, randomized, four-period cross-over investigation, including 30 patients under chronic hemodialysis at the regional hospital of Locarno (Switzerland) in February 2010 and lasting 2 years. Four subcutaneous treatment strategies (C.E.R.A. every 4 weeks Q4W and every 2 weeks Q2W, Darbepoetin alfa Q4W and Q2W) were compared with each other. The mean square successive difference of hemoglobin, reticulocyte count and ESAs dose was used to quantify variability. We distinguished a short- and a long-term variability based respectively on the weekly and monthly successive difference. RESULTS: No difference was found in the mean values of biological parameters (hemoglobin, reticulocytes, and ferritin) between the 4 strategies. ESAs type did not affect hemoglobin and reticulocyte variability, but C.E.R.A induced a more sustained reticulocytes response over time and increased the risk of hemoglobin overshooting (OR 2.7, p = 0.01). Shortening the administration interval lessened the amplitude of reticulocyte count fluctuations but resulted in more frequent ESAs dose adjustments and in amplified reticulocyte and hemoglobin variability. Q2W administration interval was however more favorable in terms of ESAs dose, allowing a 38% C.E.R.A. dose reduction, and no increase of Darbepoetin alfa. CONCLUSIONS: The reticulocyte dynamic was a more sensitive marker of time instability of the hemoglobin response under ESAs therapy. The ESAs administration interval had a greater impact on hemoglobin variability than the ESAs type. The more protracted reticulocyte response induced by C.E.R.A. could explain both, the observed higher risk of overshoot and the significant increase in efficacy when shortening its administration interval.Trial registrationClinicalTrials.gov NCT01666301.
Resumo:
An understanding of details of the interaction mechanisms of bacterial endotoxins (lipopolysaccharide, LPS) with the oxygen transport protein hemoglobin is still lacking, despite its high biological relevance. Here, a biophysical investigation into the endotoxin:hemoglobin interaction is presented which comprises the use of various rough mutant LPS as well as free lipid A; in addition to the complete hemoglobin molecule from fetal sheep extract, also the partial structure alpha-chain and the heme-free sample are studied. The investigations comprise the determination of the gel-to-liquid crystalline phase behaviour of the acyl chains of LPS, the ultrastructure (type of aggregate structure and morphology) of the endotoxins, and the incorporation of the hemoglobins into artificial immune cell membranes and into LPS. Our data suggest a model for the interaction between Hb and LPS in which hemoglobins do not react strongly with the hydrophilic or with the hydrophobic moiety of LPS, but with the complete endotoxin aggregate. Hb is able to incorporate into LPS with the longitudinal direction parallel to the lipid A double-layer. Although this does not lead to a strong disturbance of the LPS acyl chain packing, the change of the curvature leads to a slightly conical molecular shape with a change of the three-dimensional arrangement from unilamellar into cubic LPS aggregates. Our previous results show that cubic LPS structures exhibit strong endotoxic activity. The property of Hb on the physical state of LPS described here may explain the observation of an increase in LPS-mediating endotoxicity due to the action of Hb.
Resumo:
AIMS: Diabetes in pregnant women is increasing and with that the complications in their offspring. We studied our population of diabetic mothers (2003-2005) for pathologic ventricular hypertrophy (PVH). METHODS AND RESULTS: In our retrospective study of all 87 diabetic pregnancies (92 neonates), 16 were type 1, 17 were type 2, and 54 were gestational diabetes (GD). Haemoglobin glycated (HbA1c) median was 5.8% (5.3-6.5): 17 with HbA1c above normal 2 with congenital heart disease (CHD) and six with PVH. A total of 75 neonates were normal, five had CHD, and 12 had PVH (1/12 died post-natally, 1/12 stillborn, 2/12 required premature delivery, 8/12 normal). The 16 type 1 pregnancies resulted in three neonates with CHD and in 50% PVH, including one death, one premature Cesarean section because of PVH. The 17 neonates of type 2 pregnancies showed in one CHD and in 25% PVH. Of the 54 GD pregnancies, one had CHD and one had PVH. CONCLUSION: Pregnancies of both type 1 and 2 diabetes carry an increased risk for foetal development of PVH compared with those with GD. The insufficient effect of preventive glycaemia controls leads to conclude that although no definite predictive parameters for malignant outcome can be presented, close monitoring of these pregnancies may prevent perinatal catastrophes.
Resumo:
2012 brought additional evidence regarding the benefits of exercise in older persons in showing morbidity compression in those most active. Several studies invite to revise therapeutic targets in older diabetics, especially those with cognitive impairment or dementia where a value of 8 to 9% for HbAlc might be a good compromise. On the dementia side, a study suggests that biological and structural abnormalities associated with Alzheimer's disease might occur as early as 25 years before its first clinical manifestations. On the therapeutic side, ginkgo and the double therapy with memantine and donepezil did not make it in RCTs, and two studies about treatments for behavioral symptoms of dementia showed that interruption could be deleterious.
Resumo:
UNLABELLED: Trabecular bone score (TBS) seems to provide additive value on BMD to identify individuals with prevalent fractures in T1D. TBS did not significantly differ between T1D patients and healthy controls, but TBS and HbA1c were independently associated with prevalent fractures in T1D. A TBS cutoff <1.42 reflected prevalent fractures with 91.7 % sensitivity and 43.2 % specificity. INTRODUCTION: Type 1 diabetes (T1D) increases the risk of osteoporotic fractures. TBS was recently proposed as an indirect measure of bone microarchitecture. This study aimed at investigating the TBS in T1D patients and healthy controls. Associations with prevalent fractures were tested. METHODS: One hundred nineteen T1D patients (59 males, 60 premenopausal females; mean age 43.4 ± 8.9 years) and 68 healthy controls matched for gender, age, and body mass index (BMI) were analyzed. The TBS was calculated in the lumbar region, based on two-dimensional (2D) projections of DXA assessments. RESULTS: TBS was 1.357 ± 0.129 in T1D patients and 1.389 ± 0.085 in controls (p = 0.075). T1D patients with prevalent fractures (n = 24) had a significantly lower TBS than T1D patients without fractures (1.309 ± 0.125 versus 1.370 ± 0.127, p = 0.04). The presence of fractures in T1D was associated with lower TBS (odds ratio = 0.024, 95 % confidence interval (CI) = 0.001-0.875; p = 0.042) but not with age or BMI. TBS and HbA1c were independently associated with fractures. The area-under-the curve (AUC) of TBS was similar to that of total hip BMD in discriminating T1D patients with or without prevalent fractures. In this set-up, a TBS cutoff <1.42 discriminated the presence of fractures with a sensitivity of 91.7 % and a specificity of 43.2 %. CONCLUSIONS: TBS values are lower in T1D patients with prevalent fractures, suggesting an alteration of bone strength in this subgroup of patients. Reliable TBS cutoffs for the prediction of fracture risk in T1D need to be determined in larger prospective studies.
Resumo:
Hyperpolarization by dissolution dynamic nuclear polarization (DNP) is a versatile technique to dramatically enhance the nuclear magnetic resonance (NMR) signal intensity of insensitive long-T1 nuclear spins such as (6) Li. The (6) Li longitudinal relaxation of lithium ions in aqueous solutions strongly depends on the concentration of paramagnetic species, even if they are present in minute amounts. We herein demonstrate that blood oxygenation can be readily detected by taking advantage of the (6) Li signal enhancement provided by dissolution DNP, together with the more than 10% decrease in (6) Li longitudinal relaxation as a consequence of the presence of paramagnetic deoxyhemoglobin. Copyright © 2015 John Wiley & Sons, Ltd.
Resumo:
Hemoglobin and its structures have been described since the 1990s to enhance a variety of biological activities of endotoxins (LPS) in a dose-dependent manner. To investigate the interaction processes in more detail, the system was extended by studying the interactions of newly designed peptides from the γ-chain of human hemoglobin with the adjuvant monophosphoryl lipid A (MPLA), a partial structure of lipid A lacking its 1-phosphate. It was found that some selected Hbg peptides, in particular two synthetic substructures designated Hbg32 and Hbg35, considerably increased the bioactivity of MPLA, which alone was only a weak activator of immune cells. These findings hold true for human mononuclar cells, monocytes and T lymphocytes. To understand the mechanisms of action in more detail, biophysical techniques were applied. These showed a peptide-induced change of the MPLA aggregate structure from multilamellar into a non-lamellar, probably inverted, cubic structure. Concomitantly, the peptides incorporated into the tightly packed MPLA aggregates into smaller units down to monomers. The fragmentation of the aggregates was an endothermic process, differing from a complex formation but rather typical for a catalytic reaction.
Resumo:
PURPOSE: To compare hemoglobin mass (Hbmass) changes during an 18-d live high-train low (LHTL) altitude training camp in normobaric hypoxia (NH) and hypobaric hypoxia (HH). METHODS: Twenty-eight well-trained male triathletes were split into three groups (NH: n = 10, HH: n = 11, control [CON]: n = 7) and participated in an 18-d LHTL camp. NH and HH slept at 2250 m, whereas CON slept, and all groups trained at altitudes <1200 m. Hbmass was measured in duplicate with the optimized carbon monoxide rebreathing method before (pre-), immediately after (post-) (hypoxic dose: 316 vs 238 h for HH and NH), and at day 13 in HH (230 h, hypoxic dose matched to 18-d NH). Running (3-km run) and cycling (incremental cycling test) performances were measured pre and post. RESULTS: Hbmass increased similar in HH (+4.4%, P < 0.001 at day 13; +4.5%, P < 0.001 at day 18) and NH (+4.1%, P < 0.001) compared with CON (+1.9%, P = 0.08). There was a wide variability in individual Hbmass responses in HH (-0.1% to +10.6%) and NH (-1.4% to +7.7%). Postrunning time decreased in HH (-3.9%, P < 0.001), NH (-3.3%, P < 0.001), and CON (-2.1%, P = 0.03), whereas cycling performance changed nonsignificantly in HH and NH (+2.4%, P > 0.08) and remained unchanged in CON (+0.2%, P = 0.89). CONCLUSION: HH and NH evoked similar Hbmass increases for the same hypoxic dose and after 18-d LHTL. The wide variability in individual Hbmass responses in HH and NH emphasizes the importance of individual Hbmass evaluation of altitude training.
Resumo:
The truncated hemoglobin N, HbN, of Mycobacterium tuberculosis is endowed with a potent nitric oxide dioxygenase (NOD) activity that allows it to relieve nitrosative stress and enhance in vivo survival of its host. Despite its small size, the protein matrix of HbN hosts a two-branched tunnel, consisting of orthogonal short and long channels, that connects the heme active site to the protein surface. A novel dual-path mechanism has been suggested to drive migration of O(2) and NO to the distal heme cavity. While oxygen migrates mainly by the short path, a ligand-induced conformational change regulates opening of the long tunnel branch for NO, via a phenylalanine (PheE15) residue that acts as a gate. Site-directed mutagenesis and molecular simulations have been used to examine the gating role played by PheE15 in modulating the NOD function of HbN. Mutants carrying replacement of PheE15 with alanine, isoleucine, tyrosine and tryptophan have similar O(2)/CO association kinetics, but display significant reduction in their NOD function. Molecular simulations substantiated that mutation at the PheE15 gate confers significant changes in the long tunnel, and therefore may affect the migration of ligands. These results support the pivotal role of PheE15 gate in modulating the diffusion of NO via the long tunnel branch in the oxygenated protein, and hence the NOD function of HbN.
Resumo:
We have investigated the relationship between fetal hemoglobin (HbF) levels and metabolic control in subjects with insulin-dependent (N = 79) and non-insulin-dependent diabetes mellitus (N = 242). HbF and hemoglobin A1c (HbA1c) levels were increased in subjects with type 1 and type 2 diabetes as compared to levels in nondiabetic individuals (P<0.0001), and were significantly higher in type 1 than in type 2 diabetes subjects. Lower levels of HbA1c and HbF were observed in type 2 diabetes subjects treated by diet, intermediate levels in those treated with oral hypoglycemic agents, and higher levels in those treated with insulin. HbF and HbA1c levels were correlated in type 1 diabetes (R2 = 0.57, P<0.0001) and type 2 diabetes (R2 = 0.58, P<0.0001) subjects. Following intense treatment, twelve diabetic patients showed significant improvement both in HbA1c and HbF values. We conclude that increased HbF levels reflect poor metabolic control in subjects with diabetes mellitus.
Resumo:
Fetal hemoglobin was measured in HIV1/2 patients under treatment with combined therapy (zidovudine and a protease inhibitor). A total of 143 patients and 103 normal individuals were investigated by the quantitative method of Betke and the semi-quantitative acid elution method of Kleihauer. In the normal person, hemoglobin F makes up less than 1% and an increase higher than 1.5% was observed in 21.4% of HIV patients by the method of Betke and in 24.8% of HIV-infected patients by the method of Kleihauer. The quantitative biochemical method of Betke showed that the populations were significantly different (two-tailed Mann-Whitney test). The reason for this hemoglobin F increase might be ascribed to the effect of zidovudine or to direct viral action on gamma chain expression. The finding of a higher F cell frequency indicated by the method of Kleihauer rather suggests that there is an increased F cell clone proliferation rather than an increase in hemoglobin F level in every cell.