610 resultados para Gidstam, Björn: Pohjolan lintukirja


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new algorithm is proposed for scheduling preemptible arbitrary-deadline sporadic task systems upon multiprocessor platforms, with interprocessor migration permitted. This algorithm is based on a task-splitting approach - while most tasks are entirely assigned to specific processors, a few tasks (fewer than the number of processors) may be split across two processors. This algorithm can be used for two distinct purposes: for actually scheduling specific sporadic task systems, and for feasibility analysis. Simulation- based evaluation indicates that this algorithm offers a significant improvement on the ability to schedule arbitrary- deadline sporadic task systems as compared to the contemporary state-of-art. With regard to feasibility analysis, the new algorithm is proved to offer superior performance guarantees in comparison to prior feasibility tests.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a distributed algorithm for cyber-physical systems to obtain a snapshot of sensor data. The snapshot is an approximate representation of sensor data; it is an interpolation as a function of space coordinates. The new algorithm exploits a prioritized medium access control (MAC) protocol to efficiently transmit information of the sensor data. It scales to a very large number of sensors and it is able to operate in the presence of sensor faults.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We use the term Cyber-Physical Systems to refer to large-scale distributed sensor systems. Locating the geographic coordinates of objects of interest is an important problemin such systems. We present a new distributed approach to localize objects and events of interest in time complexity independent of number of nodes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Admission controllers are used to prevent overload in systems with dynamically arriving tasks. Typically, these admission controllers are based on suÆcient (but not necessary) capacity bounds in order to maintain a low computational complexity. In this paper we present how exact admission-control for aperiodic tasks can be eÆciently obtained. Our rst result is an admission controller for purely aperiodic task sets where the test has the same runtime complexity as utilization-based tests. Our second result is an extension of the previous controller for a baseload of periodic tasks. The runtime complexity of this test is lower than for any known exact admission-controller. In addition to presenting our main algorithm and evaluating its performance, we also discuss some general issues concerning admission controllers and their implementation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper studies static-priority preemptive scheduling on a multiprocessor using partitioned scheduling. We propose a new scheduling algorithm and prove that if the proposed algorithm is used and if less than 50% of the capacity is requested then all deadlines are met. It is known that for every static-priority multiprocessor scheduling algorithm, there is a task set that misses a deadline although the requested capacity is arbitrary close to 50%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider a distributed computer system such that every computer node can perform a wireless broadcast and when it does so, all other nodes receive this message. The computer nodes take sensor readings but individual sensor readings are not very important. It is important however to compute the aggregated quantities of these sensor readings. We show that a prioritized medium access control (MAC) protocol for wireless broadcast can compute simple aggregated quantities in a single transaction, and more complex quantities with many (but still a small number of) transactions. This leads to significant improvements in the time-complexity and as a consequence also similar reduction in energy “consumption”.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of scheduling a set of periodically arriving tasks on a multiprocessor with the goal of meeting deadlines. Processors are identical and have the same speed. Tasks can be preempted and they can migrate between processors. We propose an algorithm with a utilization bound of 66% and with few preemptions. It can trade a higher utilization bound for more preemption and in doing so it has a utilization bound of 100%.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of scheduling sporadic message transmission requests with deadlines. For wired channels, this has been achieved successfully using the CAN bus. For wireless channels, researchers have recently proposed a similar solution; a collision-free medium access control (MAC) protocol that implements static-priority scheduling. Unfortunately no implementation has been reported, yet. We implement and evaluate it to find that the implementation indeed is collision-free and prioritized. This allows us to develop schedulability analysis for the implementation. We measure the response times of messages in our implementation and find that our new response-time analysis indeed offers an upper bound on the response times. This enables a new class of wireless real-time systems with timeliness guarantees for sporadic messages and it opens-up a new research area: schedulability analysis for wireless networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of sharing a wireless channel between a set of computer nodes. Hidden nodes exist and there is no base station. Each computer node hosts a set of sporadic message streams where a message stream releases messages with real-time deadlines. We propose a collision-free wireless medium access control (MAC) protocol which implements staticpriority scheduling. The MAC protocol allows multiple masters and is fully distributed. It neither relies on synchronized clocks nor out-of-band signaling; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to receive an incoming bit from the channel while transmitting to the channel. Our protocol has the key feature of not only being prioritized and collision-free but also dealing successfully with hidden nodes. This key feature enables schedulability analysis of sporadic message streams in multihop networks.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a collision-free medium access control (MAC) protocol, which implements static-priority scheduling and works in the presence of hidden nodes. The MAC protocol allows multiple masters and is fully distributed; it is an adaptation to a wireless channel of the dominance protocol used in the CAN bus. But unlike that protocol, our protocol does not require a node having the ability to sense the channel while transmitting to the channel. Our protocol is collision-free even in the presence of hidden nodes and it achieves this without synchronized clocks or out-of-band busy tones. In addition, the protocol is designed to ensure that many non-interfering nodes can transmit in parallel and it functions for both broadcast and unicast transmissions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of assigning implicit-deadline sporadic tasks on a heterogeneous multiprocessor platform comprising two different types of processors—such a platform is referred to as two-type platform. We present two low degree polynomial time-complexity algorithms, SA and SA-P, each providing the following guarantee. For a given two-type platform and a task set, if there exists a task assignment such that tasks can be scheduled to meet deadlines by allowing them to migrate only between processors of the same type (intra-migrative), then (i) using SA, it is guaranteed to find such an assignment where the same restriction on task migration applies but given a platform in which processors are 1+α/2 times faster and (ii) SA-P succeeds in finding a task assignment where tasks are not allowed to migrate between processors (non-migrative) but given a platform in which processors are 1+α times faster. The parameter 0<α≤1 is a property of the task set; it is the maximum of all the task utilizations that are no greater than 1. We evaluate average-case performance of both the algorithms by generating task sets randomly and measuring how much faster processors the algorithms need (which is upper bounded by 1+α/2 for SA and 1+α for SA-P) in order to output a feasible task assignment (intra-migrative for SA and non-migrative for SA-P). In our evaluations, for the vast majority of task sets, these algorithms require significantly smaller processor speedup than indicated by their theoretical bounds. Finally, we consider a special case where no task utilization in the given task set can exceed one and for this case, we (re-)prove the performance guarantees of SA and SA-P. We show, for both of the algorithms, that changing the adversary from intra-migrative to a more powerful one, namely fully-migrative, in which tasks can migrate between processors of any type, does not deteriorate the performance guarantees. For this special case, we compare the average-case performance of SA-P and a state-of-the-art algorithm by generating task sets randomly. In our evaluations, SA-P outperforms the state-of-the-art by requiring much smaller processor speedup and by running orders of magnitude faster.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider scheduling of real-time tasks on a multiprocessor where migration is forbidden. Specifically, consider the problem of determining a task-to-processor assignment for a given collection of implicit-deadline sporadic tasks upon a multiprocessor platform in which there are two distinct types of processors. For this problem, we propose a new algorithm, LPC (task assignment based on solving a Linear Program with Cutting planes). The algorithm offers the following guarantee: for a given task set and a platform, if there exists a feasible task-to-processor assignment, then LPC succeeds in finding such a feasible task-to-processor assignment as well but on a platform in which each processor is 1.5 × faster and has three additional processors. For systems with a large number of processors, LPC has a better approximation ratio than state-of-the-art algorithms. To the best of our knowledge, this is the first work that develops a provably good real-time task assignment algorithm using cutting planes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Consider the problem of scheduling a task set τ of implicit-deadline sporadic tasks to meet all deadlines on a t-type heterogeneous multiprocessor platform where tasks may access multiple shared resources. The multiprocessor platform has m k processors of type-k, where k∈{1,2,…,t}. The execution time of a task depends on the type of processor on which it executes. The set of shared resources is denoted by R. For each task τ i , there is a resource set R i ⊆R such that for each job of τ i , during one phase of its execution, the job requests to hold the resource set R i exclusively with the interpretation that (i) the job makes a single request to hold all the resources in the resource set R i and (ii) at all times, when a job of τ i holds R i , no other job holds any resource in R i . Each job of task τ i may request the resource set R i at most once during its execution. A job is allowed to migrate when it requests a resource set and when it releases the resource set but a job is not allowed to migrate at other times. Our goal is to design a scheduling algorithm for this problem and prove its performance. We propose an algorithm, LP-EE-vpr, which offers the guarantee that if an implicit-deadline sporadic task set is schedulable on a t-type heterogeneous multiprocessor platform by an optimal scheduling algorithm that allows a job to migrate only when it requests or releases a resource set, then our algorithm also meets the deadlines with the same restriction on job migration, if given processors 4×(1+MAXP×⌈|P|×MAXPmin{m1,m2,…,mt}⌉) times as fast. (Here MAXP and |P| are computed based on the resource sets that tasks request.) For the special case that each task requests at most one resource, the bound of LP-EE-vpr collapses to 4×(1+⌈|R|min{m1,m2,…,mt}⌉). To the best of our knowledge, LP-EE-vpr is the first algorithm with proven performance guarantee for real-time scheduling of sporadic tasks with resource sharing on t-type heterogeneous multiprocessors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

International Conference on Emerging Technologies and Factory Automation (ETFA 2015), Industrial Communication Technologies and Systems, Luxembourg, Luxembourg.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tese apresentada para cumprimento dos requisitos necessários à obtenção do grau de Doutor em Sociologia.