928 resultados para Geometry Character
Resumo:
Two-band extended Hubbard model studies show that the shift in optical gap of the metal-halogen (MX) chain upon embedding in a crystalline environment depends upon alternation in the site-diagonal electron-lattice interaction parameter (epsilon(M)) and the strength of electron-electron interactions at the metal site (U(M)). The equilibrium geometry studies on isolated chains show that the MX chains tend to distort for alternating epsilon(M) and small U(M) values.
Resumo:
Crystal structure analysis of proline-containing alpha-helices in proteins has been carried out. High resolution crystal structures were selected from the Protein Data Bank. Apart from the standard internal parameters, some parameters which are specifically related to the bend in the helix due to proline have been developed and analyzed. Finally the position and nature of these helices and their interactions with the rest of the protein have been analyzed.
Resumo:
Literature suggests that apart from a significant percentage of water loss from seepage, downward seepage from the channel causes an increase in the mobility of channel bed materials and thus changes the channel stability. Consequently, regime conditions (which provide the relationship among hydraulic parameters) should also be revised by incorporating downward seepage as an additional parameter. In the present work, regime conditions for the prediction of channel geometry in alluvial channels affected by downward seepage have been formulated on the basis of experimental observations. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We give an elementary treatment of the defining representation and Lie algebra of the three-dimensional unitary unimodular group SU(3). The geometrical properties of the Lie algebra, which is an eight dimensional real Linear vector space, are developed in an SU(3) covariant manner. The f and d symbols of SU(3) lead to two ways of 'multiplying' two vectors to produce a third, and several useful geometric and algebraic identities are derived. The axis-angle parametrization of SU(3) is developed as a generalization of that for SU(2), and the specifically new features are brought out. Application to the dynamics of three-level systems is outlined.
Resumo:
Transliteration system for mobile phone is an area that is always in demand given the difficulties and constraints we face in its implementation. In this paper we deal with automatic transliteration system for Kannada which has a non-uniform geometry and inter-character spacing unlike non-oriental language text like English. So it is even more a challenging problem. Working model consists of part of the process taking place on a mobile with remaining on a server. Good results are achieved.
Resumo:
In nature, helical structures arise when identical structural subunits combine sequentially, the orientational and translational relation between each unit and its predecessor remaining constant. A helical structure is thus generated by the repeated action of a screw transformation acting on a subunit. A plane hexagonal lattice wrapped round a cylinder provides a useful starting point for describing the helical conformations of protein molecules, for investigating the geometrical properties of carbon nanotubes, and for certain types of dense packings of equal spheres.
Resumo:
Cobalt (11) phthalocyanine (CoPc) molecules have been encapsulated within the supercage of zeolite-Y. The square-planar complex, being larger than the almost spherical cage, is forced to adopt a distorted geometry on encapsulation. A comparative spectroscopic and magnetic investigation of CoPc encapsulated in zeolite-Y and in the unencapsulated state is reported. These results supported by molecular modeling have been used to understand the nature and extent of the loss of planarity of CoPc on encapsulation. The encapsulated molecule is shown to be the trans-diprotonated species in which the center of inversion is lost due to distortions required to accommodate the square complex within the zeolite. Encapsulation also leads to an enhancement of the magnetic moment of the CoPc. This is shown to be a consequence of the nonplanar geometry of the encapsulated molecule resulting in an excited high-spin state being thermally accessible.
Resumo:
This paper presents a new application of two dimensional Principal Component Analysis (2DPCA) to the problem of online character recognition in Tamil Script. A novel set of features employing polynomial fits and quartiles in combination with conventional features are derived for each sample point of the Tamil character obtained after smoothing and resampling. These are stacked to form a matrix, using which a covariance matrix is constructed. A subset of the eigenvectors of the covariance matrix is employed to get the features in the reduced sub space. Each character is modeled as a separate subspace and a modified form of the Mahalanobis distance is derived to classify a given test character. Results indicate that the recognition accuracy using the 2DPCA scheme shows an approximate 3% improvement over the conventional PCA technique.
Resumo:
This paper introduces a scheme for classification of online handwritten characters based on polynomial regression of the sampled points of the sub-strokes in a character. The segmentation is done based on the velocity profile of the written character and this requires a smoothening of the velocity profile. We propose a novel scheme for smoothening the velocity profile curve and identification of the critical points to segment the character. We also porpose another method for segmentation based on the human eye perception. We then extract two sets of features for recognition of handwritten characters. Each sub-stroke is a simple curve, a part of the character, and is represented by the distance measure of each point from the first point. This forms the first set of feature vector for each character. The second feature vector are the coeficients obtained from the B-splines fitted to the control knots obtained from the segmentation algorithm. The feature vector is fed to the SVM classifier and it indicates an efficiency of 68% using the polynomial regression technique and 74% using the spline fitting method.
Resumo:
In the present work, a thorough investigation of evolution of microstructure and texture has been carried out to elucidate the evolution of texture and grain boundary character distribution (GBCD) during Equal Channel Angular Extrusion (ECAE) of some model two-phase materials, namely Cu-0.3Cr and Cu-40Zn. Texture of Cu-0.3Cr alloy is similar to that reported for pure copper. On the other hand, in Cu-40Zn alloy, texture evolution in α and β (B2) phases are interdependent. In Cu-0.3Cr alloy, there is a considerable decreases in volume fraction of low angle boundaries (LAGBs), only a slight increase in CSL boundaries, but increase in high angle grain boundaries (HAGBs) from 1 pass to 4 passes for both the routes. In the case of Cu-40Zn alloy, there is an appreciable increase in CSL volume fraction.
Resumo:
In this work, we explore simultaneous design and material selection by posing it as an optimization problem. The underlying principles for our approach are Ashby's material selection procedure and structural optimization. For the simplicity and ease of initial implementation of the general procedure, truss structures under static load are considered in this work in view of maximum stiffness, minimum weight/cost and safety against failure. Along the lines of Ashby's material indices, a new design index is derived for trusses. This helps in choosing the most suitable material for any design of a truss. Using this, both the design space and material database are searched simultaneously using optimization algorithms. The important feature of our approach is that the formulated optimization problem is continuous even though the material selection is an inherently discrete problem.