963 resultados para Genome-specific Sequence


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Escherichia coli strains causing urinary tract infection (UTI) are increasingly recognized as belonging to specific clones. E. coli clone O25b:H4-ST131 has recently emerged globally as a leading multi-drug resistant pathogen causing urinary tract and bloodstream infections in hospitals and the community. While most molecular studies to date examine the mechanisms conferring multi-drug resistance in E. coli ST131, relatively little is known about their virulence potential. Here we examined E. coli ST131 clinical isolates from two geographically diverse collections, one representing the major pathogenic lineages causing UTI across the United Kingdom and a second representing UTI isolates from patients presenting at two large hospitals in Australia. We determined a draft genome sequence for one representative isolate, E. coli EC958, which produced CTX-M-15 extended-spectrum β-lactamase, CMY-23 type AmpC cephalosporinase and was resistant to ciprofloxacin. Comparative genome analysis indicated that EC958 encodes virulence genes commonly associated with uropathogenic E. coli (UPEC). The genome sequence of EC958 revealed a transposon insertion in the fimB gene encoding the activator of type 1 fimbriae, an important UPEC bladder colonization factor. We identified the same fimB transposon insertion in 59% of the ST131 UK isolates, as well as 71% of ST131 isolates from Australia, suggesting this mutation is common among E. coli ST131 strains. Insertional inactivation of fimB resulted in a phenotype resembling a slower off-to-on switching for type 1 fimbriae. Type 1 fimbriae expression could still be induced in fimB-null isolates; this correlated strongly with adherence to and invasion of human bladder cells and bladder colonisation in a mouse UTI model. We conclude that E. coli ST131 is a geographically widespread, antibiotic resistant clone that has the capacity to produce numerous virulence factors associated with UTI.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Autotransporter (AT) proteins are found in all Escherichia coli pathotypes and are often associated with virulence. In this study we took advantage of the large number of available E. coli genome sequences to perform an in-depth bioinformatic analysis of AT-encoding genes. Twenty-eight E. coli genome sequences were probed using an iterative approach, which revealed a total of 215 AT-encoding sequences that represented three major groups of distinct domain architecture: (i) serine protease AT proteins, (ii) trimeric AT adhesins and (iii) AIDA-I-type AT proteins. A number of subgroups were identified within each broad category, and most subgroups contained at least one characterized AT protein; however, seven subgroups contained no previously described proteins. The AIDA-I-type AT proteins represented the largest and most diverse group, with up to 16 subgroups identified from sequence-based comparisons. Nine of the AIDA-I-type AT protein subgroups contained at least one protein that possessed functional properties associated with aggregation and/or biofilm formation, suggesting a high degree of redundancy for this phenotype. The Ag43, YfaL/EhaC, EhaB/UpaC and UpaG subgroups were found in nearly all E. coli strains. Among the remaining subgroups, there was a tendency for AT proteins to be associated with individual E. coli pathotypes, suggesting that they contribute to tissue tropism or symptoms specific to different disease outcomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Acinetobacter baumannii isolate A1 was recovered in the United Kingdom in 1982 and belongs to global clone 1 (GC1). Here, we present its complete 3.91-Mbp genome sequence, generated via a combination of short-read sequencing (Illumina), long-read sequencing (PacBio), and manual finishing.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background Strand specific RNAseq data is now more common in RNAseq projects. Visualizing RNAseq data has become an important matter in Analysis of sequencing data. The most widely used visualization tool is the UCSC genome browser that introduced the custom track concept that enabled researchers to simultaneously visualize gene expression at a particular locus from multiple experiments. Our objective of the software tool is to provide friendly interface for visualization of RNAseq datasets. Results This paper introduces a visualization tool (RNASeqBrowser) that incorporates and extends the functionality of the UCSC genome browser. For example, RNASeqBrowser simultaneously displays read coverage, SNPs, InDels and raw read tracks with other BED and wiggle tracks -- all being dynamically built from the BAM file. Paired reads are also connected in the browser to enable easier identification of novel exon/intron borders and chimaeric transcripts. Strand specific RNAseq data is also supported by RNASeqBrowser that displays reads above (positive strand transcript) or below (negative strand transcripts) a central line. Finally, RNASeqBrowser was designed for ease of use for users with few bioinformatic skills, and incorporates the features of many genome browsers into one platform. Conclusions The features of RNASeqBrowser: (1) RNASeqBrowser integrates UCSC genome browser and NGS visualization tools such as IGV. It extends the functionality of the UCSC genome browser by adding several new types of tracks to show NGS data such as individual raw reads, SNPs and InDels. (2) RNASeqBrowser can dynamically generate RNA secondary structure. It is useful for identifying non-coding RNA such as miRNA. (3) Overlaying NGS wiggle data is helpful in displaying differential expression and is simple to implement in RNASeqBrowser. (4) NGS data accumulates a lot of raw reads. Thus, RNASeqBrowser collapses exact duplicate reads to reduce visualization space. Normal PC’s can show many windows of NGS individual raw reads without much delay. (5) Multiple popup windows of individual raw reads provide users with more viewing space. This avoids existing approaches (such as IGV) which squeeze all raw reads into one window. This will be helpful for visualizing multiple datasets simultaneously. RNASeqBrowser and its manual are freely available at http://www.australianprostatecentre.org/research/software/rnaseqbrowser webcite or http://sourceforge.net/projects/rnaseqbrowser/ webcite

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human genome project was a grand scientific enterprise which attracted both hyperbole and ridicule alike. The project was lauded as “the moon shot of the life sciences”, the “holy grail of man”, “the code of codes”, and “the book of life”. Such rhetoric has also received scorn. President George Bush senior managed to deflate the pretensions of the project with the accidental slip that it was the “human gnome initiative”. In The Sequence, Kevin Davies seeks to go beyond such metaphors, and provide a candid and honest account of the race of the human genome project. The author is indebted to the authoritative book The Gene Wars, which considered the early struggles over the human genome project. Robert Cook-Deegan observes that there was initially much debate over whether there should be a Human Genome Project at all: The debate became one of “big” science versus “small” science. The reliance on systematic technology development and goal-directed gene-mapping efforts presaged a new style for biology, one that elicited excitement from those attracted to whiz-bang technologies but drew gasps of revulsion from those who aspired to cultivate biology on a more modest scale and with decentralized organisation. The battle was, among other things, over whose vision would control the budget and which scientific aesthetic would prevail.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Idiomarina sp. strain 28-8 is an aerobic, Gram-negative, flagellar bacterium isolated from the bodies of ark shells (Scapharca broughtonii) collected from underwater sediments in Gangjin Bay, South Korea. Here, we present the draft genome sequence of Idiomarina sp. 28-8 (2,971,606 bp, with a G+C content of 46.9%), containing 2,795 putative coding sequences.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular phylogenetic studies of homologous sequences of nucleotides often assume that the underlying evolutionary process was globally stationary, reversible, and homogeneous (SRH), and that a model of evolution with one or more site-specific and time-reversible rate matrices (e.g., the GTR rate matrix) is enough to accurately model the evolution of data over the whole tree. However, an increasing body of data suggests that evolution under these conditions is an exception, rather than the norm. To address this issue, several non-SRH models of molecular evolution have been proposed, but they either ignore heterogeneity in the substitution process across sites (HAS) or assume it can be modeled accurately using the distribution. As an alternative to these models of evolution, we introduce a family of mixture models that approximate HAS without the assumption of an underlying predefined statistical distribution. This family of mixture models is combined with non-SRH models of evolution that account for heterogeneity in the substitution process across lineages (HAL). We also present two algorithms for searching model space and identifying an optimal model of evolution that is less likely to over- or underparameterize the data. The performance of the two new algorithms was evaluated using alignments of nucleotides with 10 000 sites simulated under complex non-SRH conditions on a 25-tipped tree. The algorithms were found to be very successful, identifying the correct HAL model with a 75% success rate (the average success rate for assigning rate matrices to the tree's 48 edges was 99.25%) and, for the correct HAL model, identifying the correct HAS model with a 98% success rate. Finally, parameter estimates obtained under the correct HAL-HAS model were found to be accurate and precise. The merits of our new algorithms were illustrated with an analysis of 42 337 second codon sites extracted from a concatenation of 106 alignments of orthologous genes encoded by the nuclear genomes of Saccharomyces cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, S. castellii, S. kluyveri, S. bayanus, and Candida albicans. Our results show that second codon sites in the ancestral genome of these species contained 49.1% invariable sites, 39.6% variable sites belonging to one rate category (V1), and 11.3% variable sites belonging to a second rate category (V2). The ancestral nucleotide content was found to differ markedly across these three sets of sites, and the evolutionary processes operating at the variable sites were found to be non-SRH and best modeled by a combination of eight edge-specific rate matrices (four for V1 and four for V2). The number of substitutions per site at the variable sites also differed markedly, with sites belonging to V1 evolving slower than those belonging to V2 along the lineages separating the seven species of Saccharomyces. Finally, sites belonging to V1 appeared to have ceased evolving along the lineages separating S. cerevisiae, S. paradoxus, S. mikatae, S. kudriavzevii, and S. bayanus, implying that they might have become so selectively constrained that they could be considered invariable sites in these species.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Chlamydia pecorum is globally associated with several ovine diseases including keratoconjunctivitis and polyarthritis. The exact relationship between the variety of C. pecorum strains reported and the diseases described in sheep remains unclear, challenging efforts to accurately diagnose and manage infected flocks. In the present study, we applied C. pecorum multi-locus sequence typing (MLST) to C. pecorum positive samples collected from sympatric flocks of Australian sheep presenting with conjunctivitis, conjunctivitis with polyarthritis, or polyarthritis only and with no clinical disease (NCD) in order to elucidate the exact relationships between the infecting strains and the range of diseases. Using Bayesian phylogenetic and cluster analyses on 62 C. pecorum positive ocular, vaginal and rectal swab samples from sheep presenting with a range of diseases and in a comparison to C. pecorum sequence types (STs) from other hosts, one ST (ST 23) was recognised as a globally distributed strain associated with ovine and bovine diseases such as polyarthritis and encephalomyelitis. A second ST (ST 69) presently only described in Australian animals, was detected in association with ovine as well as koala chlamydial infections. The majority of vaginal and rectal C. pecorum STs from animals with NCD and/or anatomical sites with no clinical signs of disease in diseased animals, clustered together in a separate group, by both analyses. Furthermore, 8/13 detected STs were novel. This study provides a platform for strain selection for further research into the pathogenic potential of C. pecorum in animals and highlights targets for potential strain-specific diagnostic test development.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have identified strong topoisomerase sites (STS) for Mycobacteruim smegmatis topoisomerase I in double-stranded DNA context using electrophoretic mobility shift assay of enzyme-DNA covalent complexes; Mg2+, an essential component for DNA relaxation activity of the enzyme, is not required for binding to DNA, The enzyme makes single-stranded nicks, with transient covalent interaction at the 5'-end of the broken DNA strand, a characteristic akin to prokaryotic topoisomerases. More importantly, the enzyme binds to duplex DNA having a preferred site with high affinity, a. property similar to the eukaryotic type I topoisomerases, The preferred cleavage site is mapped on a 65 bp duplex DNA and found to be CG/TCTT. Thus, the enzyme resembles other prokaryotic type I topoisomerases in mechanistics of the reaction, but is similar to eukaryotic enzymes in DNA recognition properties.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Background: Tuberculosis still remains one of the largest killer infectious diseases, warranting the identification of newer targets and drugs. Identification and validation of appropriate targets for designing drugs are critical steps in drug discovery, which are at present major bottle-necks. A majority of drugs in current clinical use for many diseases have been designed without the knowledge of the targets, perhaps because standard methodologies to identify such targets in a high-throughput fashion do not really exist. With different kinds of 'omics' data that are now available, computational approaches can be powerful means of obtaining short-lists of possible targets for further experimental validation. Results: We report a comprehensive in silico target identification pipeline, targetTB, for Mycobacterium tuberculosis. The pipeline incorporates a network analysis of the protein-protein interactome, a flux balance analysis of the reactome, experimentally derived phenotype essentiality data, sequence analyses and a structural assessment of targetability, using novel algorithms recently developed by us. Using flux balance analysis and network analysis, proteins critical for survival of M. tuberculosis are first identified, followed by comparative genomics with the host, finally incorporating a novel structural analysis of the binding sites to assess the feasibility of a protein as a target. Further analyses include correlation with expression data and non-similarity to gut flora proteins as well as 'anti-targets' in the host, leading to the identification of 451 high-confidence targets. Through phylogenetic profiling against 228 pathogen genomes, shortlisted targets have been further explored to identify broad-spectrum antibiotic targets, while also identifying those specific to tuberculosis. Targets that address mycobacterial persistence and drug resistance mechanisms are also analysed. Conclusion: The pipeline developed provides rational schema for drug target identification that are likely to have high rates of success, which is expected to save enormous amounts of money, resources and time in the drug discovery process. A thorough comparison with previously suggested targets in the literature demonstrates the usefulness of the integrated approach used in our study, highlighting the importance of systems-level analyses in particular. The method has the potential to be used as a general strategy for target identification and validation and hence significantly impact most drug discovery programmes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We completed the genome sequence of Lettuce necrotic yellows virus (LNYV) by determining the nucleotide sequences of the 4a (putative phosphoprotein), 4b, M (matrix protein), G (glycoprotein) and L (polymerase) genes. The genome consists of 12,807 nucleotides and encodes six genes in the order 3′ leader-N-4a(P)-4b-M-G-L-5′ trailer. Sequences were derived from clones of a cDNA library from LNYV genomic RNA and from fragments amplified using reverse transcription-polymerase chain reaction. The 4a protein has a low isoelectric point characteristic for rhabdovirus phosphoproteins. The 4b protein has significant sequence similarities with the movement proteins of capillo- and trichoviruses and may be involved in cell-to-cell movement. The putative G protein sequence contains a predicted 25 amino acids signal peptide and endopeptidase cleavage site, three predicted glycosylation sites and a putative transmembrane domain. The deduced L protein sequence shows similarities with the L proteins of other plant rhabdoviruses and contains polymerase module motifs characteristic for RNA-dependent RNA polymerases of negative-strand RNA viruses. Phylogenetic analysis of this motif among rhabdoviruses placed LNYV in a group with other sequenced cytorhabdoviruses, most closely related to Strawberry crinkle virus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bovine serum albumin conjugates of two trinucleotides, dpTpTpA and dTpTpAp, were prepared by linking the trinucleotides through their end phosphates by the ‘carbodiimide method’. Antibodies were raised in rabbits by injecting the trinucleotide-bovine serum albumin conjugates. Analysis by double diffusion in agar gel, quantitative precipitin reaction and its inhibition by haptens showed clearly the presence of antibodies specific to the whole trinucleotide molecule. The titre of antibodies obtained by the trinucleotide-rabbit serum albumin conjugates with their respective antisera was approximately the same, indicating that linking the trinucleotide through either 5′ or 3′ phosphate does not have an appreciable effect on the titre of antibodies. The results also demonstrate that the nucleotide(s) away from the carrier protein is more immunodominant than the one linked directly to the protein.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The most common causes of urinary tract infections (UTIs) are Gram-negative pathogens such as Escherichia coli; however, Gram-positive organisms including Streptococcus agalactiae, or group B streptococcus (GBS), also cause UTI. In GBS infection, UTI progresses to cystitis once the bacteria colonize bladder, but the host responses triggered in the bladder immediately following infection are largely unknown. Here, we used genome-wide expression profiling to map the bladder transcriptome of GBS UTI in mice infected transurethrally with uropathogenic GBS that was cultured from a 35 year-old women with cystitis. RNA from bladders was applied to Affymetrix Gene-1.0ST microarrays; qRT-PCR was used to analyze selected gene responses identified in array datasets. A surprisingly small significant gene list of 172 genes was identified at 24h; this compared to 2507 genes identified in a side-by-side comparison with uropathogenic E. coli (UPEC). No genes exhibited significantly altered expression at 2h in GBS-infected mice according to arrays despite high bladder bacterial loads at this early time point. The absence of a marked early host response to GBS juxtaposed with broad-based bladder responses activated by UPEC at 2h. Bioinformatics analyses including integrative systems-level network mapping revealed multiple activated biological pathways in the GBS cystitis transcriptome that regulate leukocyte activation, inflammation, apoptosis, and cytokine-chemokine biosynthesis. These findings define a novel, minimalistic type of bladder host response triggered by GBS UTI, which comprises collective antimicrobial pathways that differ dramatically from those activated by UPEC. Overall, this study emphasizes the unique nature of bladder immune activation mechanisms triggered by distinct uropathogens.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Internal ribosome entry site (IRES)-mediated translation of input viral RNA is the initial required step for the replication of the positive-stranded genome of hepatitis C virus (HCV). We have shown previously the importance of the GCAC sequence near the initiator AUG within the stem and loop IV (SLIV) region in mediating ribosome assembly on HCV RNA. Here, we demonstrate selective inhibition of HCV-IRES-mediated translation using short hairpin (sh)RNA targeting the same site within the HCV IRES. sh-SLIV showed significant inhibition of viral RNA replication in a human hepatocellular carcinoma (Huh7) cell line harbouring a HCV monocistronic replicon. More importantly, co-transfection of infectious HCV-H77s RNA and sh-SLIV in Huh7.5 cells successfully demonstrated a significant decrease in viral RNA in HCV cell culture. Additionally, we report, for the first time, the targeted delivery of sh-SLIV RNA into mice liver using Sendai virosomes and demonstrate selective inhibition of HCV-IRES-mediated translation. Results provide the proof of concept that Sendai virosomes could be used for the efficient delivery of shRNAs into liver tissue to block HCV replication.