953 resultados para Genetics, Population
Resumo:
Introgression of domestic cat genes into European wildcat (Felis silvestris silvestris) populations and reduction of wildcats’ range in Europe, leaded by habitat loss and fragmentation, are considered two of the main conservation problems for this endangered feline. This thesis addressed the questions related with the artificial hybridization and populations’ fragmentation, using a conservation genetics perspective. We combined the use of highly polymorphic loci, Bayesian statistical inferences and landscape analyses tools to investigate the origin of the geographic-genetic substructure of European wildcats (Felis silvestris silvestris) in Italy and Europe. The genetic variability of microsatellites evidenced that European wildcat populations currently distributed in Italy differentiated in, and expanded from two distinct glacial refuges during the Last Glacial Maximum. The genetic and geographic substructure detected between the eastern and western sides of the Apennine ridge, resulted by adaptation to specific ecological conditions of the Mediterranean habitats. European wildcat populations in Europe are strongly structured into 5 geographic-genetic macro clusters corresponding to: the Italian peninsular & Sicily; Balkans & north-eastern Italy; Germany eastern; central Europe; and Iberian Peninsula. Central European population might have differentiated in the extra-Mediterranean Würm ice age refuge areas (Northern Alps, Carpathians, and the Bulgarian mountain systems), while the divergence among and within the southern European populations might have resulted by the Pleistocene bio geographical framework of Europe, with three southern refugia localized in the Balkans, Italian Peninsula and Iberia Peninsula. We further combined the use of most informative autosomal SNPs with uniparental markers (mtDNA and Y-linked) for accurately detecting parental genotypes and levels of introgressive hybridization between European wild and domestic cats. A total of 11 hybrids were identified. The presence of domestic mitochondrial haplotypes shared with some wild individuals led us to hypnotize the possibility that ancient introgressive events might have occurred and that further investigation should be recommended.
Resumo:
Toxicant inputs from agriculture, industry and human settlements have been shown to severely affect freshwater ecosystems. Pollution can lead to changes in population genetic patterns through various genetic and stochastic processes. In my thesis, I investigated the impact of anthropogenic stressors on the population genetics of the zebra mussel Dreissena polymorpha. In order to analyze the genetics of zebra mussel populations, I isolated five new highly polymorphic microsatellite loci. Out of those and other already existing microsatellite markers for this species, I established a robust marker set of six microsatellite loci for D. polymorpha. rnMonitoring the biogeographical background is an important requirement when integrating population genetic measures into ecotoxicological studies. I analyzed the biogeographical background of eleven populations in a section of the River Danube (in Hungary and Croatia) and some of its tributaries, and another population in the River Rhine as genetic outgroup. Moreover, I measured abiotic water parameters at the sampling sites and analyzed if they were correlated with the genetic parameters of the populations. The genetic differentiation was basically consistent with the overall biogeographical history of the populations in the study region. However, the genetic diversity of the populations was not influenced by the geographical distance between the populations, but by the environmental factors oxygen and temperature and also by other unidentified factors. I found strong evidence that genetic adaptation of zebra mussel populations to local habitat conditions had influenced the genetic constitution of the populations. Moreover, by establishing the biogeographical baseline of molecular variance in the study area, I laid the foundation for interpreting population genetic results in ecotoxicological experiments in this region.rnIn a cooperation project with the Department of Zoology of the University of Zagreb, I elaborated an integrated approach in biomonitoring with D. polymorpha by combining the analysis techniques of microsatellite analysis, Comet assay and micronucleus test (MNT). This approach was applied in a case study on freshwater contamination by an effluent of a wastewater treatment plant (WWTP) in the River Drava (Croatia) and a complementary laboratory experiment. I assessed and compared the genetic status of two zebra mussel populations from a contaminated and a reference site. Microsatellite analysis suggested that the contaminated population had undergone a genetic bottleneck, caused by random genetic drift and selection, whereas a bottleneck was not detected in the reference population. The Comet assay did not indicate any difference in DNA damage between the two populations, but MNT revealed that the contaminated population had an increased percentage of micronuclei in hemocytes in comparison to the reference population. The laboratory experiment with mussels exposed to municipal wastewater revealed that mussels from the contaminated site had a lower percentage of tail DNA and a higher percentage of micronuclei than the reference population. These differences between populations were probably caused by an overall decreased fitness of mussels from the contaminated site due to genetic drift and by an enhanced DNA repair mechanism due to adaptation to pollution in the source habitat. Overall, the combination of the three biomarkers provided sufficient information on the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization.rnIn my thesis, I could show that the newly established marker set of six microsatellite loci provided reliable and informative data for population genetic analyses of D. polymorpha. The adaptation of the analyzed zebra mussel populations to the local conditions of their habitat had a strong influence on their genetic constitution. We found evidence that the different genetic constitutions of two populations had influenced the outcome of our ecotoxicological experiment. Overall, the integrated approach in biomonitoring gave comprehensive information about the impact of both treated and non-treated municipal wastewater on the genetics of zebra mussels at different levels of biological organization and was well practicable in a first case study.
Resumo:
Bacillus anthracis, the etiological agent of anthrax, manifests a particular bimodal lifestyle. This bacterial species alternates between short replication phases of 20-40 generations that strictly require infection of the host, normally causing death, interrupted by relatively long, mostly dormant phases as spores in the environment. Hence, the B. anthracis genome is highly homogeneous. This feature and the fact that strains from nearly all parts of the world have been analysed for canonical single nucleotide polymorphisms (canSNPs) and variable number tandem repeats (VNTRs) has allowed the development of molecular epidemiological and molecular clock models to estimate the age of major diversifications in the evolution of B. anthracis and to trace the global spread of this pathogen, which was mostly promoted by movement of domestic cattle with settlers and by international trade of contaminated animal products. From a taxonomic and phylogenetic point of view, B. anthracis is a member of the Bacillus cereus group. The differentiation of B. anthracis from B. cereus sensu strict, solely based on chromosomal markers, is difficult. However, differences in pathogenicity clearly differentiate B. anthracis from B. cereus and are marked by the strict presence of virulence genes located on the two virulence plasmids pXO1 and pXO2, which both are required by the bacterium to cause anthrax. Conversely, anthrax-like symptoms can also be caused by organisms with chromosomal features that are more closely related to B. cereus, but which carry these virulence genes on two plasmids that largely resemble the B. anthracis virulence plasmids. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We report a high-quality draft sequence of the genome of the horse (Equus caballus). The genome is relatively repetitive but has little segmental duplication. Chromosomes appear to have undergone few historical rearrangements: 53% of equine chromosomes show conserved synteny to a single human chromosome. Equine chromosome 11 is shown to have an evolutionary new centromere devoid of centromeric satellite DNA, suggesting that centromeric function may arise before satellite repeat accumulation. Linkage disequilibrium, showing the influences of early domestication of large herds of female horses, is intermediate in length between dog and human, and there is long-range haplotype sharing among breeds.
Resumo:
The Pleistocene was a dynamic period for Holarctic mammal species, complicated by episodes of glaciation, local extinctions, and intercontinental migration. The genetic consequences of these events are difficult to resolve from the study of present-day populations. To provide a direct view of population genetics in the late Pleistocene, we measured mitochondrial DNA sequence variation in seven permafrost-preserved brown bear (Ursus arctos) specimens, dated from 14,000 to 42,000 years ago. Approximately 36,000 years ago, the Beringian brown bear population had a higher genetic diversity than any extant North American population, but by 15,000 years ago genetic diversity appears similar to the modern day. The older, genetically diverse, Beringian population contained sequences from three clades now restricted to local regions within North America, indicating that current phylogeographic patterns may provide misleading data for evolutionary studies and conservation management. The late Pleistocene phylogeographic data also indicate possible colonization routes to areas south of the Cordilleran ice sheet.
Resumo:
Analysis of genetic variation among modern individuals is providing insight into prehistoric events. Comparisons of levels and patterns of genetic diversity with the predictions of models based on archeological evidence suggest that the spread of early farmers from the Levant was probably the main episode in the European population history, but that both older and more recent processes have left recognizable traces in the current gene pool.
Resumo:
RNA viruses are excellent experimental models for studying evolution under the theoretical framework of population genetics. For a proper justification of this thesis we have introduced some properties of RNA viruses that are relevant for studying evolution. On the other hand, population genetics is a reductionistic theory of evolution. It does not consider or make simplistic assumptions on the transformation laws within and between genotypic and phenotypic spaces. However, such laws are minimized in the case of RNA viruses because the phenotypic space maps onto the genotypic space in a much more linear way than on higher DNA-based organisms. Under experimental conditions, we have tested the role of deleterious and beneficial mutations in the degree of adaptation of vesicular stomatitis virus (VSV), a nonsegmented virus of negative strand. We also have studied how effective population size, initial genetic variability in populations, and environmental heterogeneity shapes the impact of mutations in the evolution of vesicular stomatitis virus. Finally, in an integrative attempt, we discuss pros and cons of the quasispecies theory compared with classic population genetics models for haploid organisms to explain the evolution of RNA viruses.
Resumo:
Species of pathogenic microbes are composed of an array of evolutionarily distinct chromosomal genotypes characterized by diversity in gene content and sequence (allelic variation). The occurrence of substantial genetic diversity has hindered progress in developing a comprehensive understanding of the molecular basis of virulence and new therapeutics such as vaccines. To provide new information that bears on these issues, 11 genes encoding extracellular proteins in the human bacterial pathogen group A Streptococcus identified by analysis of four genomes were studied. Eight of the 11 genes encode proteins with a LPXTG(L) motif that covalently links Gram-positive virulence factors to the bacterial cell surface. Sequence analysis of the 11 genes in 37 geographically and phylogenetically diverse group A Streptococcus strains cultured from patients with different infection types found that recent horizontal gene transfer has contributed substantially to chromosomal diversity. Regions of the inferred proteins likely to interact with the host were identified by molecular population genetic analysis, and Western immunoblot analysis with sera from infected patients confirmed that they were antigenic. Real-time reverse transcriptase–PCR (TaqMan) assays found that transcription of six of the 11 genes was substantially up-regulated in the stationary phase. In addition, transcription of many genes was influenced by the covR and mga trans-acting gene regulatory loci. Multilocus investigation of putative virulence genes by the integrated approach described herein provides an important strategy to aid microbial pathogenesis research and rapidly identify new targets for therapeutics research.
Resumo:
Simple sequence repeats (SSRs), consisting of tandemly repeated multiple copies of mono-, di-, tri-, or tetranucleotide motifs, are ubiquitous in eukaryotic genomes and are frequently used as genetic markers, taking advantage of their length polymorphism. We have examined the polymorphism of such sequences in the chloroplast genomes of plants, by using a PCR-based assay. GenBank searches identified the presence of several (dA)n.(dT)n mononucleotide stretches in chloroplast genomes. A chloroplast (cp) SSR was identified in three pine species (Pinus contorta, Pinus sylvestris, and Pinus thunbergii) 312 bp upstream of the psbA gene. DNA amplification of this repeated region from 11 pine species identified nine length variants. The polymorphic amplified fragments were isolated and the DNA sequence was determined, confirming that the length polymorphism was caused by variation in the length of the repeated region. In the pines, the chloroplast genome is transmitted through pollen and this PCR assay may be used to monitor gene flow in this genus. Analysis of 305 individuals from seven populations of Pinus leucodermis Ant. revealed the presence of four variants with intrapopulational diversities ranging from 0.000 to 0.629 and an average of 0.320. Restriction fragment length polymorphism analysis of cpDNA on the same populations previously failed to detect any variation. Population subdivision based on cpSSR was higher (Gst = 0.22, where Gst is coefficient of gene differentiation) than that revealed in a previous isozyme study (Gst = 0.05). We anticipate that SSR loci within the chloroplast genome should provide a highly informative assay for the analysis of the genetic structure of plant populations.
Resumo:
"RLO-2225-5-18."