879 resultados para Genetic research
Novel molecular markers of Chlamydia pecorum genetic diversity in the koala (Phascolarctos cinereus)
Resumo:
Background Chlamydia pecorum is an obligate intracellular bacterium and the causative agent of reproductive and ocular disease in several animal hosts including koalas, sheep, cattle and goats. C. pecorum strains detected in koalas are genetically diverse, raising interesting questions about the origin and transmission of this species within koala hosts. While the ompA gene remains the most widely-used target in C. pecorum typing studies, it is generally recognised that surface protein encoding genes are not suited for phylogenetic analysis and it is becoming increasingly apparent that the ompA gene locus is not congruent with the phylogeny of the C. pecorum genome. Using the recently sequenced C. pecorum genome sequence (E58), we analysed 10 genes, including ompA, to evaluate the use of ompA as a molecular marker in the study of koala C. pecorum genetic diversity. Results Three genes (incA, ORF663, tarP) were found to contain sufficient nucleotide diversity and discriminatory power for detailed analysis and were used, with ompA, to genotype 24 C. pecorum PCR-positive koala samples from four populations. The most robust representation of the phylogeny of these samples was achieved through concatenation of all four gene sequences, enabling the recreation of a "true" phylogenetic signal. OmpA and incA were of limited value as fine-detailed genetic markers as they were unable to confer accurate phylogenetic distinctions between samples. On the other hand, the tarP and ORF663 genes were identified as useful "neutral" and "contingency" markers respectively, to represent the broad evolutionary history and intra-species genetic diversity of koala C. pecorum. Furthermore, the concatenation of ompA, incA and ORF663 sequences highlighted the monophyletic nature of koala C. pecorum infections by demonstrating a single evolutionary trajectory for koala hosts that is distinct from that seen in non-koala hosts. Conclusions While the continued use of ompA as a fine-detailed molecular marker for epidemiological analysis appears justified, the tarP and ORF663 genes also appear to be valuable markers of phylogenetic or biogeographic divisions at the C. pecorum intra-species level. This research has significant implications for future typing studies to understand the phylogeny, genetic diversity, and epidemiology of C. pecorum infections in the koala and other animal species.
Resumo:
Optimising the container transfer schedule at the multimodal terminals is known to be NP-hard, which implies that the best solution becomes computationally infeasible as problem sizes increase. Genetic Algorithm (GA) techniques are used to reduce container handling/transfer times and ships' time at the port by speeding up handling operations. The GA is chosen due to the relatively good results that have been reported even with the simplest GA implementations to obtain near-optimal solutions in reasonable time. Also discussed, is the application of the model to assess the consequences of increased scheduled throughput time as well as different strategies such as the alternative plant layouts, storage policies and number of yard machines. A real data set used for the solution and subsequent sensitivity analysis is applied to the alternative plant layouts, storage policies and number of yard machines.
Resumo:
Genetic variation at allozyme and mitochondrial DNA loci was investigated in the Australian lungfish, Neoceratodus forsteri Krefft 1870. Tissue samples for genetic analysis were taken non-lethally from 278 individuals representing two spatially distinct endemic populations (Mary and Burnett rivers), as well as one population thought to be derived from an anthropogenic translocation in the 1890's (Brisbane river). Two of 24 allozyme loci resolved from muscle tissue were polymorphic. Mitochondrial DNA nucleotide sequence diversity estimated across 2,235 base pairs in each of 40 individuals ranged between 0.000423 and 0.001470 per river. Low genetic variation at allozyme and mitochondrial loci could be attributed to population bottlenecks, possibly induced by Pleistocene aridity. Limited genetic differentiation was detected among rivers using nuclear and mitochondrial markers suggesting that admixture may have occurred between the endemic Mary and Burnett populations during periods of low sea level when the drainages may have converged before reaching the ocean. Genetic data was consistent with the explanation that lungfish were introduced to the Brisbane river from the Mary river. Further research using more variable genetic loci is needed before the conservation status of populations can be determined, particularly as anthropogenic demands on lungfish habitat are increasing. In the interim we recommend a management strategy aimed at conserving existing genetic variation within and between rivers.
Resumo:
Considerate amount of research has proposed optimization-based approaches employing various vibration parameters for structural damage diagnosis. The damage detection by these methods is in fact a result of updating the analytical structural model in line with the current physical model. The feasibility of these approaches has been proven. But most of the verification has been done on simple structures, such as beams or plates. In the application on a complex structure, like steel truss bridges, a traditional optimization process will cost massive computational resources and lengthy convergence. This study presents a multi-layer genetic algorithm (ML-GA) to overcome the problem. Unlike the tedious convergence process in a conventional damage optimization process, in each layer, the proposed algorithm divides the GA’s population into groups with a less number of damage candidates; then, the converged population in each group evolves as an initial population of the next layer, where the groups merge to larger groups. In a damage detection process featuring ML-GA, as parallel computation can be implemented, the optimization performance and computational efficiency can be enhanced. In order to assess the proposed algorithm, the modal strain energy correlation (MSEC) has been considered as the objective function. Several damage scenarios of a complex steel truss bridge’s finite element model have been employed to evaluate the effectiveness and performance of ML-GA, against a conventional GA. In both single- and multiple damage scenarios, the analytical and experimental study shows that the MSEC index has achieved excellent damage indication and efficiency using the proposed ML-GA, whereas the conventional GA only converges at a local solution.
Resumo:
Freshwater prawn (Macrobrachium rosenbergii) culture in the Western Hemisphere is primarily, if not entirely, derived from 36 individual prawns originally introduced to Hawaii from Malaysia in 1965 and 1966. Little information is available regarding genetic variation within and among cultured prawn stocks worldwide. The goal of the current study was to characterize genetic diversity in various prawn populations with emphasis on those cultured in North America. Five microsatellite loci were screened to estimate genetic diversity in two wild (Myanmar and India-wild) and seven cultured (Hawaii-1, Hawaii-2, India-cultured, Israel, Kentucky, Mississippi and Texas) populations. Average allelic richness ranged from 3.96 (Israel) to 20.45 (Myanmar). Average expected heterozygosity ranged from 0.580 (Israel) to 0.935 (Myanmar). Many of the cultured populations exhibited reduced genetic diversity when compared with the Myanmar and the India-cultured populations. Significant deficiency in heterozygotes was detected in the India-cultured, Mississippi and Kentucky populations (overall Fis estimated of 0.053, 0.067 and 0.108 respectively) reflecting moderate levels of inbreeding. Overall estimate of fixation index (Fst = 0.1569) revealed moderately high levels of differentiation among the populations. Outcome of this study provide a baseline assessment of genetic diversity in some available strains that will be useful for the development of breeding programmes.
Resumo:
The study assessed natural levels and patterns of genetic variation in Arabian Gulf populations of a native pearl oyster to define wild population structure considering potential intrinsic and extrinsic factors that could influence any wild structure detected. The study was also the first attempt to develop microsatellite markers and to generate a genome survey sequence (GSS) dataset for the target species using next generation sequencing technology. The partial genome dataset generated has potential biotechnological applications and for pearl oyster farming in the future.
Resumo:
Migraine is a neurological disorder that affects the central nervous system causing painful attacks of headache. A genetic vulnerability and exposure to environmental triggers can influence the migraine phenotype. Migraine interferes in many facets of people’s daily life including employment commitments and their ability to look after their families resulting in a reduced quality of life. Identification of the biological processes that underlie this relatively common affliction has been difficult because migraine does not have any clearly identifiable pathology or structural lesion detectable by current medical technology. Theories to explain the symptoms of migraine have focused on the physiological mechanisms involved in the various phases of headache and include the vascular and neurogenic theories. In relation to migraine pathophysiology the trigeminovascular system and cortical spreading depression have also been implicated with supporting evidence from imaging studies and animal models. The objective of current research is to better understand the pathways and mechanisms involved in causing pain and headache to be able to target interventions. The genetic component of migraine has been teased apart using linkage studies and both candidate gene and genome-wide association studies, in family and case-control cohorts. Genomic regions that increase individual risk to migraine have been identified in neurological, vascular and hormonal pathways. This review discusses knowledge of the pathophysiology and genetic basis of migraine with the latest scientific evidence from genetic studies.
Resumo:
Multiple sclerosis (MS) is a serious cause of neurological disability among young adults. The clinical course remains difficult to predict, and the pathogenesis of the disease is still modestly understood. Autoimmunity is thought to be a key aspect of the disease, with autoreactive T cells thought to mediate central nervous system (CNS) inflammation to some extent. Toll-like receptors are known to mediate cellular recognition of pathogens by way of patterns of molecular presentation. Toll-like receptor 3 is coded by the gene TLR3 and is recognized as an important factor in virus recognition and is known to be involved in the expression of neuroprotective mediators. We set out to investigate two variations within the TLR3 gene, an 8 bp insertion-deletion \[-/A](8) and a single base-pair variation C1236T, in subjects with MS and matched healthy controls to determine whether significant differences exist in these markers in an Australian population. We used capillary gel electrophoresis and TaqMan genotyping assay techniques to resolve genotypes for each marker, respectively. Our work found no significant difference between frequencies for TLR3 \[-/A](8) by genotype (chi(2)=1.03, p=0.60) or allele (chi(2)=1.09, p=0.30). Similarly, we found no evidence for the association of TLR3 C1236T by genotype (chi(2)=0.35, p=0.84) or allele frequency (chi(2)=0.31, p=0.58). This work reveals no evidence to suggest that these markers are associated with MS in the tested population. Although the role of TLR3 and the wider toll-like receptor family remain significant in neurological and CNS inflammatory disorders, our current work does not support a role for the two tested variants in this gene with regard to MS susceptibility.
Resumo:
Multiple sclerosis (MS) is a chronic neurological disease characterized by central nervous system (CNS) inflammation and demyelination. The C677T substitution variant in the methylenetetrahydrofolate reductase (MTHFR) gene has been associated with increased levels of circulating homocysteine and is a mild risk factor for vascular disease. Higher blood levels of homocysteine have also been reported in MS. Thus, the C677T mutation of the MTHFR gene may influence MS susceptibility. Noradrenaline, a neurotransmitter believed to play an immunosupressive role in neuroinflammatory disorders, is catabolized by catechol-O-methyl transferase (COMT). The COMT G158A substitution results in a three- to four-fold decreased activity of the COMT enzyme, which may influence CNS synaptic catecholamine breakdown and could also play a role in MS inflammation. We tested DNA from Australian MS patients and unaffected control subjects, matched for gender, age and ethnicity. Specifically, we genotyped the MTHFR C677T and the COMT G158A mutations. Genotype distributions showed that the homozygous mutant MTHFR genotype (T/T) and the COMT (H/H) genotype were slightly over-represented in the MS group (16% versus 11% and 24% versus 19%, respectively), but both variations failed to reach statistical significance (P=0.15 and P=0.32, respectively). Hence, results from the present study do not support a major role for either functional gene mutation in MS susceptibility.
Resumo:
Migraine, with and without aura (MA and MO), is a prevalent and complex neurovascular disorder that is likely to be influenced by multiple genes some of which may be capable of causing vascular changes leading to disease onset. This study was conducted to determine whether the ACE I/D gene variant is involved in migraine risk and whether this variant might act in combination with the previously implicated MTHFR C677T genetic variant in 270 migraine cases and 270 matched controls. Statistical analysis of the ACE I/D variant indicated no significant difference in allele or genotype frequencies (P > 0.05). However, grouping of genotypes showed a modest, yet significant, over-representation of the DD/ID genotype in the migraine group (88%) compared to controls (81%) (OR of 1.64, 95% CI: 1.00–2.69, P = 0.048). Multivariate analysis, including genotype data for the MTHFR C677T, provided evidence that the MTHFR (TT) and ACE (ID/DD) genotypes act in combination to increase migraine susceptibility (OR = 2.18, 95% CI: 1.15–4.16, P = 0.018). This effect was greatest for the MA subtype where the genotype combination corresponded to an OR of 2.89 (95% CI:1.47–5.72, P = 0.002). In Caucasians, the ACE D allele confers a weak independent risk to migraine susceptibility and also appears to act in combination with the C677T variant in the MTHFR gene to confer a stronger influence on the disease.
Resumo:
A novel method was developed for studying the genetic relatedness of Pseudomonas aeruginosa isolates from clinical and environmental sources. This bacterium is ubiquitous in the natural environment and is an important pathogen known to infect Cystic Fibrosis (CF) patients. The transmission route of strains has not yet been defined; current theories include acquisition from an environmental source or through patient-to-patient spread. A highly discriminatory, bioinformatics based, DNA typing method was developed to investigate the relatedness of clinical and environmental isolates. This study found a similarity between the environmental and several CF clonal strains and also highlighted occurrence of environmental P. aeruginosa strains in CF infections.
Resumo:
Purpose: Over 40% of the permanent population of Norfolk Island possesses a unique genetic admixture dating to Pitcairn Island in the late 18 th century, with descendents having varying degrees of combined Polynesian and European ancestry. We conducted a population-based study to determine the prevalence and causes of blindness and low vision on Norfolk Island. Methods: All permanent residents of Norfolk Island aged ≥ 15 years were invited to participate. Participants completed a structured questionnaire/interview and underwent a comprehensive ophthalmic examination including slit-lamp biomicroscopy. Results: We recruited 781 people aged ≥ 15, equal to 62% of the permanent population, 44% of whom could trace their ancestry to Pitcairn Island. No one was bilaterally blind. Prevalence of unilateral blindness (visual acuity [VA] < 6/60) in those aged ≥ 40 was 1.5%. Blindness was more common in females (P=0.049) and less common in people with Pitcairn Island ancestry (P<0.001). The most common causes of unilateral blindness were age-related macular degeneration (AMD), amblyopia, and glaucoma. Five people had low vision (Best-Corrected VA < 6/18 in better eye), with 4 (80%) due to AMD. People with Pitcairn Island ancestry had a lower prevalence of AMD (P<0.001) but a similar prevalence of glaucoma to those without Pitcairn Island ancestry. Conclusions: The prevalence of blindness and visual impairment in this isolated Australian territory is low, especially amongst those with Pitcairn Island ancestry. AMD was the most common cause of unilateral blindness and low vision. The distribution of chronic ocular diseases on Norfolk Island is similar to mainland Australian estimates.
Resumo:
Background/Aim: Since microRNAs (miRNAs) act as translational regulators of multiple genes, single nucleotide polymorphisms (SNP) in them can have potentially wide-ranging effects. Using an association approach, this research examined the effects of the rs6505162 SNP, an A>C polymorphism located in the premiRNA region of miR-423, on breast cancer development. Materials and Methods: Caucasian Australian women with breast cancer and controls matched for age and ethnicity were genotyped for rs6505162 and their genotypic and allelic frequencies analysed for significant differences. Results: Analysis indicated that there were significant differences between the case and control populations (χ 2=6.70, p=0.035), with the CC genotype conferring reduced risk of breast cancer development (odds ratio=0.50 95% confidence interval=0.27-0.92, p=0.03). Conclusion: Further functional research is required to determine the mechanism of action of this SNP on miRNA function.
Resumo:
Migraine is classified by the World Health Organization (WHO) as being one of the top 20 most debilitating diseases. According to the neurovascular hypothesis, neuroinflammation may promote the activation and sensitisation of meningeal nociceptors, inducing the persistent throbbing headache characterized in migraine. The tumor necrosis factor (TNF) gene cluster, made up of TNFα, lymphotoxin α (LTA), and lymphotoxin β (LTB), has been implicated to influence the intensity and duration of local inflammation. It is thought that sterile inflammation mediated by LTA, LTB, and TNFα contributes to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Previous studies have investigated variants within the TNF gene cluster region in relation to migraine susceptibility, with largely conflicting results. The aim of this study was to expand on previous research and utilize a large case-control cohort and range of variants within the TNF gene cluster to investigate the role of the TNF gene cluster in migraine. Nine single nucleotide polymorphisms (SNPs) were selected for investigation as follows: rs1800683, rs2229094, rs2009658, rs2071590, rs2239704, rs909253, rs1800630, rs1800629, and rs3093664. No significant association with migraine susceptibility was found for any of the SNPs tested, with further testing according to migraine subtype and gender also showing no association for disease risk. Haplotype analysis showed that none of the tested haplotypes were significantly associated with migraine.