895 resultados para Genetic Algorithms, Adaptation, Internet Computing
Resumo:
The present paper proposes a new hybrid multi-population genetic algorithm (HMPGA) as an approach to solve the multi-level capacitated lot sizing problem with backlogging. This method combines a multi-population based metaheuristic using fix-and-optimize heuristic and mathematical programming techniques. A total of four test sets from the MULTILSB (Multi-Item Lot-Sizing with Backlogging) library are solved and the results are compared with those reached by two other methods recently published. The results have shown that HMPGA had a better performance for most of the test sets solved, specially when longer computing time is given. © 2012 Elsevier Ltd.
Resumo:
This paper presents a survey of evolutionary algorithms that are designed for decision-tree induction. In this context, most of the paper focuses on approaches that evolve decision trees as an alternate heuristics to the traditional top-down divide-and-conquer approach. Additionally, we present some alternative methods that make use of evolutionary algorithms to improve particular components of decision-tree classifiers. The paper's original contributions are the following. First, it provides an up-to-date overview that is fully focused on evolutionary algorithms and decision trees and does not concentrate on any specific evolutionary approach. Second, it provides a taxonomy, which addresses works that evolve decision trees and works that design decision-tree components by the use of evolutionary algorithms. Finally, a number of references are provided that describe applications of evolutionary algorithms for decision-tree induction in different domains. At the end of this paper, we address some important issues and open questions that can be the subject of future research.
Resumo:
This paper presents a structural damage detection methodology based on genetic algorithms and dynamic parameters. Three chromosomes are used to codify an individual in the population. The first and second chromosomes locate and quantify damage, respectively. The third permits the self-adaptation of the genetic parameters. The natural frequencies and mode shapes are used to formulate the objective function. A numerical analysis was performed for several truss structures under different damage scenarios. The results have shown that the methodology can reliably identify damage scenarios using noisy measurements and that it results in only a few misidentified elements. (C) 2012 Civil-Comp Ltd and Elsevier Ltd. All rights reserved.
Resumo:
Intelligent Transportation Systems (ITS) cover a broad range of methods and technologies that provide answers to many problems of transportation. Unmanned control of the steering wheel is one of the most important challenges facing researchers in this area. This paper presents a method to adjust automatically a fuzzy controller to manage the steering wheel of a mass-produced vehicle to reproduce the steering of a human driver. To this end, information is recorded about the car's state while being driven by human drivers and used to obtain, via genetic algorithms, appropriate fuzzy controllers that can drive the car in the way that humans do. These controllers have satisfy two main objectives: to reproduce the human behavior, and to provide smooth actions to ensure comfortable driving. Finally, the results of automated driving on a test circuit are presented, showing both good route tracking (similar to the performance obtained by persons in the same task) and smooth driving.
Resumo:
This research was partially supported by the Serbian Ministry of Science and Ecology under project 144007. The authors are grateful to Ivana Ljubić for help in testing and to Vladimir Filipović for useful suggestions and comments.
Resumo:
Accurate estimation of road pavement geometry and layer material properties through the use of proper nondestructive testing and sensor technologies is essential for evaluating pavement’s structural condition and determining options for maintenance and rehabilitation. For these purposes, pavement deflection basins produced by the nondestructive Falling Weight Deflectometer (FWD) test data are commonly used. The nondestructive FWD test drops weights on the pavement to simulate traffic loads and measures the created pavement deflection basins. Backcalculation of pavement geometry and layer properties using FWD deflections is a difficult inverse problem, and the solution with conventional mathematical methods is often challenging due to the ill-posed nature of the problem. In this dissertation, a hybrid algorithm was developed to seek robust and fast solutions to this inverse problem. The algorithm is based on soft computing techniques, mainly Artificial Neural Networks (ANNs) and Genetic Algorithms (GAs) as well as the use of numerical analysis techniques to properly simulate the geomechanical system. A widely used pavement layered analysis program ILLI-PAVE was employed in the analyses of flexible pavements of various pavement types; including full-depth asphalt and conventional flexible pavements, were built on either lime stabilized soils or untreated subgrade. Nonlinear properties of the subgrade soil and the base course aggregate as transportation geomaterials were also considered. A computer program, Soft Computing Based System Identifier or SOFTSYS, was developed. In SOFTSYS, ANNs were used as surrogate models to provide faster solutions of the nonlinear finite element program ILLI-PAVE. The deflections obtained from FWD tests in the field were matched with the predictions obtained from the numerical simulations to develop SOFTSYS models. The solution to the inverse problem for multi-layered pavements is computationally hard to achieve and is often not feasible due to field variability and quality of the collected data. The primary difficulty in the analysis arises from the substantial increase in the degree of non-uniqueness of the mapping from the pavement layer parameters to the FWD deflections. The insensitivity of some layer properties lowered SOFTSYS model performances. Still, SOFTSYS models were shown to work effectively with the synthetic data obtained from ILLI-PAVE finite element solutions. In general, SOFTSYS solutions very closely matched the ILLI-PAVE mechanistic pavement analysis results. For SOFTSYS validation, field collected FWD data were successfully used to predict pavement layer thicknesses and layer moduli of in-service flexible pavements. Some of the very promising SOFTSYS results indicated average absolute errors on the order of 2%, 7%, and 4% for the Hot Mix Asphalt (HMA) thickness estimation of full-depth asphalt pavements, full-depth pavements on lime stabilized soils and conventional flexible pavements, respectively. The field validations of SOFTSYS data also produced meaningful results. The thickness data obtained from Ground Penetrating Radar testing matched reasonably well with predictions from SOFTSYS models. The differences observed in the HMA and lime stabilized soil layer thicknesses observed were attributed to deflection data variability from FWD tests. The backcalculated asphalt concrete layer thickness results matched better in the case of full-depth asphalt flexible pavements built on lime stabilized soils compared to conventional flexible pavements. Overall, SOFTSYS was capable of producing reliable thickness estimates despite the variability of field constructed asphalt layer thicknesses.
Resumo:
Dissertação de Mestrado, Engenharia Informática, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2015
Resumo:
Dissertação de dout. em Electrónica e Computação, Faculdade de Ciências e Tecnologia, Univ. do Algarve, 2004
Resumo:
Las organizaciones y sus entornos son sistemas complejos. Tales sistemas son difíciles de comprender y predecir. Pese a ello, la predicción es una tarea fundamental para la gestión empresarial y para la toma de decisiones que implica siempre un riesgo. Los métodos clásicos de predicción (entre los cuales están: la regresión lineal, la Autoregresive Moving Average y el exponential smoothing) establecen supuestos como la linealidad, la estabilidad para ser matemática y computacionalmente tratables. Por diferentes medios, sin embargo, se han demostrado las limitaciones de tales métodos. Pues bien, en las últimas décadas nuevos métodos de predicción han surgido con el fin de abarcar la complejidad de los sistemas organizacionales y sus entornos, antes que evitarla. Entre ellos, los más promisorios son los métodos de predicción bio-inspirados (ej. redes neuronales, algoritmos genéticos /evolutivos y sistemas inmunes artificiales). Este artículo pretende establecer un estado situacional de las aplicaciones actuales y potenciales de los métodos bio-inspirados de predicción en la administración.
Resumo:
This work aims to study the application of Genetic Algorithms in anaerobic digestion modeling, in particular when using dynamical models. Along the work, different types of bioreactors are shown, such as batch, semi-batch and continuous, as well as their mathematical modeling. The work intendeds to estimate the parameter values of two biological reaction model. For that, simulated results, where only one output variable, the produced biogas, is known, are fitted to the model results. For this reason, the problems associated with reverse optimization are studied, using some graphics that provide clues to the sensitivity and identifiability associated with the problem. Particular solutions obtained by the identifiability analysis using GENSSI and DAISY softwares are also presented. Finally, the optimization is performed using genetic algorithms. During this optimization the need to improve the convergence of genetic algorithms was felt. This need has led to the development of an adaptation of the genetic algorithms, which we called Neighbored Genetic Algorithms (NGA1 and NGA2). In order to understand if this new approach overcomes the Basic Genetic Algorithms (BGA) and achieves the proposed goals, a study of 100 full optimization runs for each situation was further developed. Results show that NGA1 and NGA2 are statistically better than BGA. However, because it was not possible to obtain consistent results, the Nealder-Mead method was used, where the initial guesses were the estimated results from GA; Algoritmos Evolucionários para a Modelação de Bioreactores Resumo: Neste trabalho procura-se estudar os algoritmos genéticos com aplicação na modelação da digestão anaeróbia e, em particular, quando se utilizam modelos dinâmicos. Ao longo do mesmo, são apresentados diferentes tipos de bioreactores, como os batch, semi-batch e contínuos, bem como a modelação matemática dos mesmos. Neste trabalho procurou-se estimar o valor dos parâmetros que constam num modelo de digestão anaeróbia para o ajustar a uma situação simulada onde apenas se conhece uma variável de output, o biogas produzido. São ainda estudados os problemas associados à optimização inversa com recurso a alguns gráficos que fornecem pistas sobre a sensibilidade e identifiacabilidade associadas ao problema da modelação da digestão anaeróbia. São ainda apresentadas soluções particulares de idenficabilidade obtidas através dos softwares GENSSI e DAISY. Finalmente é realizada a optimização do modelo com recurso aos algoritmos genéticos. No decorrer dessa optimização sentiu-se a necessidade de melhorar a convergência e, portanto, desenvolveu-se ainda uma adaptação dos algoritmos genéticos a que se deu o nome de Neighboured Genetic Algorithms (NGA1 e NGA2). No sentido de se compreender se as adaptações permitiam superar os algoritmos genéticos básicos e atingir as metas propostas, foi ainda desenvolvido um estudo em que o processo de optimização foi realizado 100 vezes para cada um dos métodos, o que permitiu concluir, estatisticamente, que os BGA foram superados pelos NGA1 e NGA2. Ainda assim, porque não foi possivel obter consistência nos resultados, foi usado o método de Nealder-Mead utilizado como estimativa inicial os resultados obtidos pelos algoritmos genéticos.
Resumo:
Power system small signal stability analysis aims to explore different small signal stability conditions and controls, namely: (1) exploring the power system security domains and boundaries in the space of power system parameters of interest, including load flow feasibility, saddle node and Hopf bifurcation ones; (2) finding the maximum and minimum damping conditions; and (3) determining control actions to provide and increase small signal stability. These problems are presented in this paper as different modifications of a general optimization to a minimum/maximum, depending on the initial guesses of variables and numerical methods used. In the considered problems, all the extreme points are of interest. Additionally, there are difficulties with finding the derivatives of the objective functions with respect to parameters. Numerical computations of derivatives in traditional optimization procedures are time consuming. In this paper, we propose a new black-box genetic optimization technique for comprehensive small signal stability analysis, which can effectively cope with highly nonlinear objective functions with multiple minima and maxima, and derivatives that can not be expressed analytically. The optimization result can then be used to provide such important information such as system optimal control decision making, assessment of the maximum network's transmission capacity, etc. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
We propose a simulated-annealing-based genetic algorithm for solving model parameter estimation problems. The algorithm incorporates advantages of both genetic algorithms and simulated annealing. Tests on computer-generated synthetic data that closely resemble optical constants of a metal were performed to compare the efficiency of plain genetic algorithms against the simulated-annealing-based genetic algorithms. These tests assess the ability of the algorithms to and the global minimum and the accuracy of values obtained for model parameters. Finally, the algorithm with the best performance is used to fit the model dielectric function to data for platinum and aluminum. (C) 1997 Optical Society of America.
Resumo:
Numerical optimisation methods are being more commonly applied to agricultural systems models, to identify the most profitable management strategies. The available optimisation algorithms are reviewed and compared, with literature and our studies identifying evolutionary algorithms (including genetic algorithms) as superior in this regard to simulated annealing, tabu search, hill-climbing, and direct-search methods. Results of a complex beef property optimisation, using a real-value genetic algorithm, are presented. The relative contributions of the range of operational options and parameters of this method are discussed, and general recommendations listed to assist practitioners applying evolutionary algorithms to the solution of agricultural systems. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
A previously developed model is used to numerically simulate real clinical cases of the surgical correction of scoliosis. This model consists of one-dimensional finite elements with spatial deformation in which (i) the column is represented by its axis; (ii) the vertebrae are assumed to be rigid; and (iii) the deformability of the column is concentrated in springs that connect the successive rigid elements. The metallic rods used for the surgical correction are modeled by beam elements with linear elastic behavior. To obtain the forces at the connections between the metallic rods and the vertebrae geometrically, non-linear finite element analyses are performed. The tightening sequence determines the magnitude of the forces applied to the patient column, and it is desirable to keep those forces as small as possible. In this study, a Genetic Algorithm optimization is applied to this model in order to determine the sequence that minimizes the corrective forces applied during the surgery. This amounts to find the optimal permutation of integers 1, ... , n, n being the number of vertebrae involved. As such, we are faced with a combinatorial optimization problem isomorph to the Traveling Salesman Problem. The fitness evaluation requires one computing intensive Finite Element Analysis per candidate solution and, thus, a parallel implementation of the Genetic Algorithm is developed.
Resumo:
A package of B-spline finite strip models is developed for the linear analysis of piezolaminated plates and shells. This package is associated to a global optimization technique in order to enhance the performance of these types of structures, subjected to various types of objective functions and/or constraints, with discrete and continuous design variables. The models considered are based on a higher-order displacement field and one can apply them to the static, free vibration and buckling analyses of laminated adaptive structures with arbitrary lay-ups, loading and boundary conditions. Genetic algorithms, with either binary or floating point encoding of design variables, were considered to find optimal locations of piezoelectric actuators as well as to determine the best voltages applied to them in order to obtain a desired structure shape. These models provide an overall economy of computing effort for static and vibration problems.