931 resultados para Gaussian quadratures
Resumo:
O Feixe Gaussiano (FG) é uma solução assintótica da equação da elastodinâmica na vizinhança paraxial de um raio central, a qual se aproxima melhor do campo de ondas do que a aproximação de ordem zero da Teoria do Raio. A regularidade do FG na descrição do campo de ondas, assim como a sua elevada precisão em algumas regiões singulares do meio de propagação, proporciona uma forte alternativa no imageamento sísmicos. Nesta dissertação, apresenta-se um novo procedimento de migração sísmica pré-empilhamento em profundidade com amplitudes verdadeiras, que combina a flexibilidade da migração tipo Kirchhoff e a robustez da migração baseada na utilização de Feixes Gaussianos para a representação do campo de ondas. O algoritmo de migração proposto é constituído por dois processos de empilhamento: o primeiro é o empilhamento de feixes (“beam stack”) aplicado a subconjuntos de dados sísmicos multiplicados por uma função peso definida de modo que o operador de empilhamento tenha a mesma forma da integral de superposição de Feixes Gaussianos; o segundo empilhamento corresponde à migração Kirchhoff tendo como entrada os dados resultantes do primeiro empilhamento. Pelo exposto justifica-se a denominação migração Kirchhoff-Gaussian-Beam (KGB).Afim de comparar os métodos Kirchhoff e KGB com respeito à sensibilidade em relação ao comprimento da discretização, aplicamos no conjunto de dados conhecido como Marmousi 2-D quatro grids de velocidade, ou seja, 60m, 80m 100m e 150m. Como resultado, temos que ambos os métodos apresentam uma imagem muito melhor para o menor intervalo de discretização da malha de velocidade. O espectro de amplitude das seções migradas nos fornece o conteúdo de frequência espacial das seções das imagens obtidas.
Resumo:
A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H approximate to 1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H = 1/2 but with a non-Gaussian propagator.
Resumo:
Spatial linear models have been applied in numerous fields such as agriculture, geoscience and environmental sciences, among many others. Spatial dependence structure modelling, using a geostatistical approach, is an indispensable tool to estimate the parameters that define this structure. However, this estimation may be greatly affected by the presence of atypical observations in the sampled data. The purpose of this paper is to use diagnostic techniques to assess the sensitivity of the maximum-likelihood estimators, covariance functions and linear predictor to small perturbations in the data and/or the spatial linear model assumptions. The methodology is illustrated with two real data sets. The results allowed us to conclude that the presence of atypical values in the sample data have a strong influence on thematic maps, changing the spatial dependence structure.
Resumo:
Most superdiffusive Non-Markovian random walk models assume that correlations are maintained at all time scales, e. g., fractional Brownian motion, Levy walks, the Elephant walk and Alzheimer walk models. In the latter two models the random walker can always "remember" the initial times near t = 0. Assuming jump size distributions with finite variance, the question naturally arises: is superdiffusion possible if the walker is unable to recall the initial times? We give a conclusive answer to this general question, by studying a non-Markovian model in which the walker's memory of the past is weighted by a Gaussian centered at time t/2, at which time the walker had one half the present age, and with a standard deviation sigma t which grows linearly as the walker ages. For large widths we find that the model behaves similarly to the Elephant model, but for small widths this Gaussian memory profile model behaves like the Alzheimer walk model. We also report that the phenomenon of amnestically induced persistence, known to occur in the Alzheimer walk model, arises in the Gaussian memory profile model. We conclude that memory of the initial times is not a necessary condition for generating (log-periodic) superdiffusion. We show that the phenomenon of amnestically induced persistence extends to the case of a Gaussian memory profile.
Resumo:
A new method for analysis of scattering data from lamellar bilayer systems is presented. The method employs a form-free description of the cross-section structure of the bilayer and the fit is performed directly to the scattering data, introducing also a structure factor when required. The cross-section structure (electron density profile in the case of X-ray scattering) is described by a set of Gaussian functions and the technique is termed Gaussian deconvolution. The coefficients of the Gaussians are optimized using a constrained least-squares routine that induces smoothness of the electron density profile. The optimization is coupled with the point-of-inflection method for determining the optimal weight of the smoothness. With the new approach, it is possible to optimize simultaneously the form factor, structure factor and several other parameters in the model. The applicability of this method is demonstrated by using it in a study of a multilamellar system composed of lecithin bilayers, where the form factor and structure factor are obtained simultaneously, and the obtained results provided new insight into this very well known system.
Resumo:
Abstract Background Using univariate and multivariate variance components linkage analysis methods, we studied possible genotype × age interaction in cardiovascular phenotypes related to the aging process from the Framingham Heart Study. Results We found evidence for genotype × age interaction for fasting glucose and systolic blood pressure. Conclusions There is polygenic genotype × age interaction for fasting glucose and systolic blood pressure and quantitative trait locus × age interaction for a linkage signal for systolic blood pressure phenotypes located on chromosome 17 at 67 cM.
Resumo:
The Gaussian-2, Gaussian-3, complete basis set- (CBS-) QB3, and CBS-APNO methods have been used to calculate ΔH° and ΔG° values for neutral clusters of water, (H2O)n, where n = 2−6. The structures are similar to those determined from experiment and from previous high-level calculations. The thermodynamic calculations by the G2, G3, and CBS-APNO methods compare well against the estimated MP2(CBS) limit. The cyclic pentamer and hexamer structures release the most heat per hydrogen bond formed of any of the clusters. While the cage and prism forms of the hexamer are the lowest energy structures at very low temperatures, as temperature is increased the cyclic structure is favored. The free energies of cluster formation at different temperatures reveal interesting insights, the most striking being that the cyclic trimer, cyclic tetramer, and cyclic pentamer, like the dimer, should be detectable in the lower troposphere. We predict water dimer concentrations of 9 × 1014 molecules/cm3, water trimer concentrations of 2.6 × 1012 molecules/cm3, tetramer concentrations of approximately 5.8 × 1011 molecules/cm3, and pentamer concentrations of approximately 3.5 × 1010 molecules/cm3 in saturated air at 298 K. These results have important implications for understanding the gas-phase chemistry of the lower troposphere.
Resumo:
Complete basis set and Gaussian-n methods were combined with Barone and Cossi's implementation of the polarizable conductor model (CPCM) continuum solvation methods to calculate pKa values for six carboxylic acids. Four different thermodynamic cycles were considered in this work. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol, to calculate pKa values with cycle 1. The complete basis set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. Thermodynamic cycles that include an explicit water in the cycle are not accurate when the free energy of solvation of a water molecule is used, but appear to become accurate when the experimental free energy of vaporization of water is used. This apparent improvement is an artifact of the standard state used in the calculation. Geometry relaxation in solution does not improve the results when using these later cycles. The use of cycle 1 and the complete basis set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit. © 2001 John Wiley & Sons, Inc. Int J Quantum Chem, 2001
Resumo:
Complete Basis Set and Gaussian-n methods were combined with CPCM continuum solvation methods to calculate pKa values for six carboxylic acids. An experimental value of −264.61 kcal/mol for the free energy of solvation of H+, ΔGs(H+), was combined with a value for Ggas(H+) of −6.28 kcal/mol to calculate pKa values with Cycle 1. The Complete Basis Set gas-phase methods used to calculate gas-phase free energies are very accurate, with mean unsigned errors of 0.3 kcal/mol and standard deviations of 0.4 kcal/mol. The CPCM solvation calculations used to calculate condensed-phase free energies are slightly less accurate than the gas-phase models, and the best method has a mean unsigned error and standard deviation of 0.4 and 0.5 kcal/mol, respectively. The use of Cycle 1 and the Complete Basis Set models combined with the CPCM solvation methods yielded pKa values accurate to less than half a pKa unit.
Resumo:
The complete basis set methods CBS-4, CBS-QB3, and CBS-APNO, and the Gaussian methods G2 and G3 were used to calculate the gas phase energy differences between six different carboxylic acids and their respective anions. Two different continuum methods, SM5.42R and CPCM, were used to calculate the free energy differences of solvation for the acids and their anions. Relative pKa values were calculated for each acid using one of the acids as a reference point. The CBS-QB3 and CBS-APNO gas phase calculations, combined with the CPCM/HF/6-31+G(d)//HF/6-31G(d) or CPCM/HF/6-31+G(d)//HF/6-31+G(d) continuum solvation calculations on the lowest energy gas phase conformer, and with the conformationally averaged values, give results accurate to ½ pKa unit. © 2001 American Institute of Physics.
Resumo:
The Gaussian-2, Gaussian-3, Complete Basis Set-QB3, and Complete Basis Set-APNO methods have been used to calculate geometries of neutral clusters of water, (H2O)n, where n = 2–6. The structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. These methods also provide excellent thermochemical predictions for water clusters, and thus can be used with confidence in evaluating the structures and thermochemistry of water clusters.
Resumo:
The Gaussian-3 method developed by Pople and coworkers has been used to calculate the free energy of neutral octamer clusters of water, (H2O)8. The most energetically stable structures are in excellent agreement with those determined from experiment and those predicted from previous high-level calculations. Cubic structures are favored over noncubic structures over all temperature ranges studied. The D2d cubic structure is the lowest free energy structure and dominates the potential energy and free energy hypersurfaces from 0 K to 298 K.