1000 resultados para Gauge boson


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Light gauge steel roofing systems made of thin profiled roof sheeting and battens are used commonly in residential, industrial and commercial buildings. Their critical design load combination is that due to wind uplift forces that occur during high wind events such as tropical cyclones and thunderstorms. However, premature local failures at their screw connections have been a concern for many decades since cyclone Tracy that devastated Darwin in 1974. Extensive research that followed cyclone Tracy on the pull-through and pull-out failures of roof sheeting to batten connections has significantly improved the safety of roof sheeting. However, this has made the batten to rafter/truss connection the weakest, and recent wind damage investigations have shown the failures of these connections and the resulting loss of entire roof structures. Therefore an experimental research program using both small scale and full scale air-box tests is currently under way to investigate the pull-through failures of thin-walled steel battens under high wind uplift forces. Tests have demonstrated that occurrence of pull-through failures in the bottom flanges of steel batttens and the need to develop simple test and design methods as a function of many critical parameters such as steel batten geometry, thickness and grade, screw fastener sizes and other fastening details. This paper presents the details of local failures that occur in light fauge roofing systems, a review of the current design and test methods for steel battens and associated short comings, and the test results obtained to date on pull-through failures of battens from small scale and full scale tests. Finally, it proposes the use of suitable small scale test methods that can be used by both researchers and manufacturers of such screw-fastened light gauge steel batten systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the fire performance results of light gauge steel frame (LSF) walls lined with single and double plasterboards, and externally insulated with rock fibre insulation as obtained using a finite element analysis based parametric study. A validated numerical model was used to study the influence of various fire curves developed for a range of compartment characteristics. Data from the parametric study was utilized to develop a simplified method to predict the fire resistance ratings of LSF walls exposed to realistic design fire curves. Further, this paper also presents the details of suitable fire design rules based on current cold-formed steel standards and the modifications proposed by previous researchers. Of these the recently developed design rules by Gunalan and Mahendran [1] were investigated to determine their applicability to predict the axial compression strengths and fire resistance ratings (FRR) of LSF walls exposed to realistic design fires. Finally, the stud failure times obtained from fire design rules and finite element studies were compared for LSF walls lined with single and double plasterboards, and externally insulated with rock fibres under realistic design fire curves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents the details of research undertaken on the development of an energy based time equivalent approach for light gauge steel frame (LSF) walls. This research utilized an energy based time equivalent approach to obtain the fire resistance ratings (FRR) of LSF walls exposed to realistic design fires with respect to standard fire exposure [1]. It is based on the equal area concept of fire severity and relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance of single and double plasterboard lined and externally insulated LSF walls. The predicted fire resistance ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations. This paper presents the review of the available time equivalent approaches and the development of energy based time equivalent approach for the prediction of fire resistance ratings of LSF walls exposed to realistic design fires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cold-formed steel members are widely used in load bearing Light gauge steel frame (LSF) wall systems with plasterboard linings on both sides. However, these thin-walled steel sections heat up quickly and lose their strength under fire conditions despite the protection provided by plasterboards. Hence there is a need for simple fire design rules to predict their load capacities and fire resistance ratings. During fire events, the LSF wall studs are subjected to non-uniform temperature distributions that cause thermal bowing, neutral axis shift and magnification effects and thus resulting in a combined axial compression and bending action on the LSF wall studs. In this research a series of full scale fire tests was conducted first to evaluate the performance of LSF wall systems with eight different wall configurations under standard fire conditions. Finite element models of LSF walls were then developed, analysed under transient and steady state conditions, and validated using full scale fire tests. Using the results from fire tests and finite element analyses, a detailed investigation was undertaken into the prediction of axial compression strength and failure times of LSF wall studs in standard fires using the available fire design rules based on Australian, American and European standards. The results from both fire tests and finite element analyses were used to investigate the ability of these fire design rules to include the complex effects of non-uniform temperature distributions and their accuracy in predicting the axial compression strengths of wall studs and the failure times. Suitable modifications were then proposed to the fire design rules. This paper presents the details of this investigation into the accuracy of using currently available fire design rules of LSF walls and the results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Structural fire safety has become one of the key considerations in the design and maintenance of the built infrastructure. Conventionally the fire resistance rating of load bearing Light gauge Steel Frame (LSF) walls is determined based on the standard time-temperature curve given in ISO 834. Recent research has shown that the true fire resistance of building elements exposed to building fires can be less than their fire resistance ratings determined based on standard fire tests. It is questionable whether the standard time-temperature curve truly represents the fuel loads in modern buildings. Therefore an equivalent fire severity approach has been used in the past to obtain fire resistance rating. This is based on the performance of a structural member exposed to a realistic design fire curve in comparison to that of standard fire time-temperature curve. This paper presents the details of research undertaken to develop an energy based time equivalent approach to obtain the fire resistance ratings of LSF walls exposed to realistic design fire curves with respect to standard fire exposure. This approach relates to the amount of energy transferred to the member. The proposed method was used to predict the fire resistance ratings of single and double layer plasterboard lined and externally insulated LSF walls. The predicted fire ratings were compared with the results from finite element analyses and fire design rules for three different wall configurations exposed to both rapid and prolonged fires. The comparison shows that the proposed energy method can be used to obtain the fire resistance ratings of LSF walls in the case of prolonged fires.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using the dimensional reduction regularization scheme, we show that radiative corrections to the anomaly of the axial current, which is coupled to the gauge field, are absent in a supersymmetric U(1) gauge model for both 't Hooft-Veltman and Bardeen prescriptions for γ5. We also discuss the results with reference to conventional dimensional regularization. This result has significant implications with respect to the renormalizability of supersymmetric models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The extension of Hehl's Poincaré gauge theory to more general groups that include space-time diffeomorphisms is worked out for two particular examples, one corresponding to the action of the conformal group on Minkowski space, and the other to the action of the de Sitter group on de Sitter space, and the effect of these groups on physical fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Several boson subsystems may be involved in electrosorption phenomena. To accommodate this possibility, the one-boson formalism described in Parts I–III is extended to this case. The hierarchy in the superoperator scheme, the evaluation of operator averages for closure and several special cases are indicated. As an illustration, some calculations are presented to indicate the trends of many-body corrections in chemisorption.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The need for reexamination of the standard model of strong, weak, and electromagnetic interactions is discussed, especially with regard to 't Hooft's criterion of naturalness. It has been argued that theories with fundamental scalar fields tend to be unnatural at relatively low energies. There are two solutions to this problem: (i) a global supersymmetry, which ensures the absence of all the naturalness-violating effects associated with scalar fields, and (ii) composite structure of the scalar fields, which starts showing up at energy scales where unnatural effects would otherwise have appeared. With reference to the second solution, this article reviews the case for dynamical breaking of the gauge symmetry and the technicolor scheme for the composite Higgs boson. This new interaction, of the scaled-up quantum chromodynamic type, keeps the new set of fermions, the technifermions, together in the Higgs particles. It also provides masses for the electroweak gauge bosons W± and Z0 through technifermion condensate formation. In order to give masses to the ordinary fermions, a new interaction, the extended technicolor interaction, which would connect the ordinary fermions to the technifermions, is required. The extended technicolor group breaks down spontaneously to the technicolor group, possibly as a result of the "tumbling" mechanism, which is discussed here. In addition, the author presents schemes for the isospin breaking of mass matrices of ordinary quarks in the technicolor models. In generalized technicolor models with more than one doublet of technifermions or with more than one technicolor sector, we have additional low-lying degrees of freedom, the pseudo-Goldstone bosons. The pseudo-Goldstone bosons in the technicolor model of Dimopoulos are reviewed and their masses computed. In this context the vacuum alignment problem is also discussed. An effective Lagrangian is derived describing colorless low-lying degrees of freedom for models with two technicolor sectors in the combined limits of chiral symmetry and large number of colors and technicolors. Finally, the author discusses suppression of flavor-changing neutral currents in the extended technicolor models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Any (N+M)-parameter Lie group G with an N-parameter subgroup H can be realized as a global group of diffeomorphisms on an M-dimensional base space B, with representations in terms of transformation laws of fields on B belonging to linear representations of H. The gauged generalization of the global diffeomorphisms consists of general diffeomorphisms (or coordinate transformations) on a base space together with a local action of H on the fields. The particular applications of the scheme to space-time symmetries is discussed in terms of Lagrangians, field equations, currents, and source identities. Journal of Mathematical Physics is copyrighted by The American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is shown that the Fayet-Illiopoulos D term in N= 1 supersymmetric spontaneously broken U( 1) gauge theories may get one-loop corrections, even when trace U( 1) charges are zero. However, these corrections are only logarithmically divergent and hence do not affect the naturalness of the theory.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The one-loop quadratically divergent mass corrections in globally supersymmetric gauge theories with spontaneously broken abelian and non-abelian gauge symmetry are studied. Quadratically divergent mass corrections are found to persist in an abelian model with an ABJ anomaly. However, additional supermultiplets necessary to cancel the ABJ anomaly, turn out to be sufficient to eliminate the quadratic divergences as well, rendering the theory natural. Quadratic divergences are shown to vanish also in the case of an anomaly free model with spontaneously broken non-abelian gauge symmetry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We discuss the consistency, unitarity and Lorentz invariance of an anomalous U(1) gauge theory in four dimensions. Our analysis is based on an effective low-energy action valid in the chiral symmetry broken phase. The allegedly bad properties of anomalous theories (except non-renormalizability) are examined. It is shown that, in the low-energy context, the theory can be consistently and unitarily quantised, and is formally Lorentz covariant.

Relevância:

20.00% 20.00%

Publicador: