920 resultados para Gastrointestinal motility


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The hemizona assay (HZA) in Rhesus monkeys was employed to study the correlation of zona-binding ability with sperm motility or with naturally developing oocytes at various maturational stages. Oocytes from unstimulated ovaries were retrieved within 2 hr from monkeys sacrificed for vaccine production (in reproductive season, but with their menstrual cycles not determined). Oocytes were divided into four groups based on their morphological maturation: 1) Oocytes surrounded by more than one cumulus layer (MC); 2) Oocytes retaining intact germinal vesicle nuclei (GV); 3) Oocytes with germinal vesicle breakdown showing distinct perivitelline space (PVS); and 4) Oocytes extruding the first polar body (PB1). The mean numbers of sperm bound to hemizona for PBI, PVS, GV, and MC groups were 132.9 +/- 12.0, 71.5 +/- 10.1, 36.1 +/- 4.0, and 20.1 +/- 2.9 (Mean +/- SE), respectively. The four groups showed significant differences from each other in sperm/egg binding ability (P < 0.01). The number of bound sperm significantly increased with oocyte maturation. The present study also showed that zona-binding ability was also affected by sperm motility. For sperm with 67.7% motility and sperm with 31.2% motility, the average numbers of bound sperm were 43.5 +/- 2.2 and 25.3 +/- 2.9 (Mean +/- SE), respectively. There was significantly higher binding ability for sperm with higher motility (P < 0.01). The results suggest that: 1)The rhesus monkey model can serve as a very sensitive model for studying sperm/egg interaction by HZA; 2) Sperm motility positively correlated with sperm/egg binding; and 3) Sperm/egg binding ability increases with oocyte maturation. The binding ability is highest when oocytes matured to the PB1 stage, which is also the best opportunity for fertilization. This is strong evidence for the ''zona maturation'' hypothesis. (C) 1994 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its importance to virulence. In this study we have explored the contribution of the bacterial cytoskeleton to the ability of Salmonella to express and assemble virulence factors and cause disease. The bacterial actin-like protein MreB polymerises into helical filaments and interacts with other cytoskeletal elements including MreC to control cell-shape. As mreB appears to be an essential gene, we have constructed a viable ΔmreC depletion mutant in Salmonella. Using a broad range of independent biochemical, fluorescence and phenotypic screens we provide evidence that the Salmonella pathogenicity island-1 type three secretion system (SPI1-T3SS) and flagella systems are down-regulated in the absence of MreC. In contrast the SPI-2 T3SS appears to remain functional. The phenotypes have been further validated using a chemical genetic approach to disrupt the functionality of MreB. Although the fitness of ΔmreC is reduced in vivo, we observed that this defect does not completely abrogate the ability of Salmonella to cause disease systemically. By forcing on expression of flagella and SPI-1 T3SS in trans with the master regulators FlhDC and HilA, it is clear that the cytoskeleton is dispensable for the assembly of these structures but essential for their expression. As two-component systems are involved in sensing and adapting to environmental and cell surface signals, we have constructed and screened a panel of such mutants and identified the sensor kinase RcsC as a key phenotypic regulator in ΔmreC. Further genetic analysis revealed the importance of the Rcs two-component system in modulating the expression of these virulence factors. Collectively, these results suggest that expression of virulence genes might be directly coordinated with cytoskeletal integrity, and this regulation is mediated by the two-component system sensor kinase RcsC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BALB/c mice were immunized intragastrically with human sperm. Cells from the Peyer's patches and spleens of the immunized mice were for the preparation of hybridomas secreting antisperm monoclonal IgA (mcIgA). The specific ratio of IgA-secreting cells in Peyer's patches was much higher than that in spleen. The binding site on human sperm of 9 of 19 mcIgA was in the post-acrosomal region using an immunofluorescent assay. Two of eight selected mcIgA caused strong human sperm agglutination and three of them produced significant inhibition of mouse in vitro fertilization. No mcIgA tested caused obvious human sperm immobilization or inhibited mouse in vivo fertilization. In vitro assembly of selected mcIgA in ascites with mouse secretory component (SC) caused no significant changes in effects on sperm function and in vitro fertilization. By use of Western blotting, dimer or higher polymers were demonstrated in all selected mcIgAs and corresponding protein antigens in 6 of 8 selected mcIgAs. These results suggest that human sperm function may be inhibited and fertilization rate reduced by specific secretory IgA to human sperm and that secretory immunity to protein antigens of human sperm could be induced by intragastrointestinal immunization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a fast, high-throughput method for characterizing the motility of microorganisms in 3D based on standard imaging microscopy. Instead of tracking individual cells, we analyse the spatio-temporal fluctuations of the intensity in the sample from time-lapse images and obtain the intermediate scattering function (ISF) of the system. We demonstrate our method on two different types of microorganisms: bacteria, both smooth swimming (run only) and wild type (run and tumble) Escherichia coli, and the bi-flagellate alga Chlamydomonas reinhardtii. We validate the methodology using computer simulations and particle tracking. From the ISF, we are able to extract (i) for E. coli: the swimming speed distribution, the fraction of motile cells and the diffusivity, and (ii) for C. reinhardtii: the swimming speed distribution, the amplitude and frequency of the oscillatory dynamics. In both cases, the motility parameters are averaged over \approx 10^4 cells and obtained in a few minutes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Habitat fragmentation may result in the reduction of diversity of parasite communities by affecting population size and dispersal pattern of species. In the flood plain of the Yangtze River in China, many lakes, which were once connected with the river, have become isolated since the 1950s from the river by the construction of dams and sluices, with many larger lakes subdivided into smaller ones by road embankments. These artificial barriers have inevitably obstructed the migration of fish between the river and lakes and also among lakes. In this study, the gastrointestinal helminth communities were investigated in a carnivorous fish, the yellowhead catfish Pelteobagrus fulvidraco, from two connected and five isolated lakes in the flood plain in order to detect the effect of lake fragmentation on the parasite communities. Results: A total of 11 species of helminths were recorded in the stomach and intestine of P. fulvidraco from seven lakes, including two lakes connected with the Yangtze River, i.e. Poyang and Dongting lakes, and five isolated lakes, i.e. Honghu, Liangzi, Tangxun, Niushan and Baoan lakes. Mean helminth individuals and diversity of helminth communities in Honghu and Dongting lakes was lower than in the other five lakes. The nematode Procamallanus fulvidraconis was the dominant species of communities in all the seven lakes. No significant difference in the Shannon-Wiener index was detected between connected lakes (0.48) and isolated lakes (0.50). The similarity of helminth communities between Niushan and Baoan lakes was the highest (0.6708), and the lowest was between Tangxun and Dongting lakes (0.1807). The similarity was low between Dongting and the other lakes, and the similarity decreased with the geographic distance among these lakes. The helminth community in one connected lake, Poyang Lake was clustered with isolated lakes, but the community in Dongting Lake was separated in the tree. Conclusion: The similarity in the helminth communities of this fish in the flood-plain lakes may be attributed to the historical connection of these habitats and to the completion of the life-cycles of this fish as well as the helminth species within the investigated habitats. The diversity and the digenean majority in the helminth communities can be related to the diet of this fish, and to the lacustrine and macrophytic characters of the habitats. The lake isolation from the river had little detectable effect on the helminth communities of the catfish in flood-plain lakes of the Yangtze River. The low similarities in helminth communities between the Dongting Lake and others may just be a reflection of its unique water environment and anthropogenic alterations or fragmentation in this lake.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Endothelial filopodia play key roles in guiding the tubular sprouting during angiogenesis. However, their dynamic morphological characteristics, with the associated implications in cell motility, have been subjected to limited investigations. In this work, the interaction between endothelial cells and extracellular matrix fibrils was recapitulated in vitro, where a specific focus was paid to derive the key morphological parameters to define the dynamics of filopodium-like protrusion during cell motility. Based on one-dimensional gelatin fibrils patterned by near-field electrospinning (NFES), we study the response of endothelial cells (EA.hy926) under normal culture or ROCK inhibition. It is shown that the behaviour of temporal protrusion length versus cell motility can be divided into distinct modes. Persistent migration was found to be one of the modes which permitted cell displacement for over 300 μm at a speed of approximately 1 μm min-1. ROCK inhibition resulted in abnormally long protrusions and diminished the persistent migration, but dramatically increased the speeds of protrusion extension and retraction. Finally, we also report the breakage of protrusion during cell motility, and examine its phenotypic behaviours. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of Ginsenoside R-e on human sperm motility in fertile and asthenozoospermic infertile individuals in vitro and the mechanism by which the Ginsenosides play their roles. The semen samples were obtained from 10 fertile volunteers and 10 asthenozoospermic infertile patients. Spermatozoa were separated by Percoll and incubated with 0, 1, 10 or 100 mu M of Ginsenoside R-e. Total sperm motility and progressive motility were measured by computer-aided sperm analyzer (CASA). Nitric oxide synthase (NOS) activity was determined by the H-3-arginine to H-3-citrulline conversion assay, and the NOS protein was examined by the Western blot analysis. The production of sperm nitric oxide (NO) was detected using the Griess reaction. The results showed that Ginsenoside R-e significantly enhanced both fertile and infertile sperm motility, NOS activity and NO production in a concentration-dependent manner. Sodium nitroprusside (SNP, 100 nM), a NO donor, mimicked the effects of Ginsenoside R-e. And pretreatment with a NOS inhibitor N-omega-Nitro-L-arginine methyl ester (L-NAME, 100 mu M) or a NO scavenger N-Acetyl-L-cysteine (LNAC, 1 mM) completely blocked the effects of Ginsenoside R-e. Data suggested that Ginsenoside R-e is beneficial to sperm motility, and that induction of NOS to increase NO production may be involved in this benefit.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large yellow croaker, Pseudosciaena crocea, exhibit sexually dimorphic growth, with females growing faster and reaching larger adult sizes than males. Thus, development of techniques for preferentially producing females is necessary to optimize production of these species. We have established a protocol to produce all-female croaker P. crocea through induction of meiotic gynogenesis with homologous sperm. The first set of experiments investigated the ultra-violet (UV) irradiation on sperm motility and duration of sperm activity to determine the optimal UV dosage for genetic inactivation of sperm, yet retaining adequate motility for activation of eggs. Milt from several males was diluted 1: 100 with Ringer's solution and UV irradiated with doses ranging from 0-150 J cm (-2). The results indicated that motility and duration of activity generally decreased with increased UV doses. At UV doses greater than 105 J cm(-2), after fertilization, motility was < 10% and fertilization rates were significantly lower. Highest hatching rate was obtained at 75 J cm -2. A second set of experiments was carried out to determine appropriate conditions of cold shock for retention of the 2nd polar body in P. crocea eggs after fertilization with UV-inactivated sperm by altering the timing, temperature and duration of shock. At 208 degrees C, shock applied at 3 min after fertilization resulted in higher survival rate of larvae at 6 h after hatching. Results of different combinations of three shock temperatures ( 28 degrees C, 38 degrees C or 48 degrees C) and five shock durations ( 4 min, 8 min, 12 min, 16 min or 20 min) at 3 min after fertilization demonstrated that shocks of 12 min gave highest production of diploid gynogens. Statistical analysis revealed that maximum production of diploid gynogens (44.55 +/- 2.99%) were obtained at 38 degrees C. The results of this study indicate that the use of UV-irradiated homologous sperm for activation of P. crocea eggs and cold shock for polar body retention is an effective method for producing gynogenetic offspring.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of feeding 0, 4, 8 and 16% rapeseed oil from 12-42 days of age was studied in broiler chickens on performance, digestibility of nutrients, and development of gastrointestinal tract, protein and energy metabolism. Thirty six female chickens (Ross 208) with initial body weight average 246 g were allocated to the four groups and kept pair-wise in metabolism cages. The chickens were fed similar amounts of metabolisable energy (ME) per day and similar amounts of essential amino acids relative to ME by adjusting with crystalline amino acids. The chickens were subjected to four balance periods each of five days with two 24 h measurements of gas exchange in two open-air-circuit respiration chambers inserted on the second and third day of each period. The addition of rapeseed oil increased the amount of gutfill indicating a reduced rate of passage and causing a hypertrophy of the gastrointestinal tract. There was a positive effect on feed utilisation as well as on digestibility especially of dietary fat together with higher utilisation of protein with addition of rapeseed oil. The partial fat digestibility of rapeseed oil estimated by regression was 91.1% and the partial metabolisability (ME/GE) of the rapeseed oil was estimated to 85% yielding an apparent metabolisable energy value of 34.30 MJ/kg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crohn's Disease (CD) is a chronic inflammatory bowel disease of unknown etiology. Recent work has shown that a new pathotype of Escherichia coli, Adherent Invasive E. coli (AIEC) may be associated with CD. AIEC has been shown to adhere to and invade epithelial cells and to replicate within macrophages (together this is called the AIEC phenotype). In this thesis, the AIEC phenotype of 84 E. coli strains were determined in order to identify the prevalence of this phenotype within the E. coli genus. This study showed that a significant proportion of E. coli strains (approx. 5%) are capable of adhering to and invading epithelial cells and undergoing intramacrophage replication. Moreover, the results presented in this study indicate a correlation between survival in macrophage and resistance to grazing by amoeba supporting the coincidental evolution hypothesis that resistance to amoebae could be a driving force in the evolution of pathogenicity in some bacteria, such as AIEC. In addition, this study has identified an important regulatory role for the CpxA/R two component system (TCS) in the invasive abilities of AIEC HM605, a colonic mucosa-associated CD isolate. A mutation in cpxR was shown to be defective in the invasion of epithelial cells and this defect was shown to be independent of motility or the expression of Type 1 fimbriae, factors that have been shown to be involved in the invasion of another strain of AIEC, isolated from a patient with ileal CD, called LF82. The CpxA/R TCS responds to disturbances in the cell envelope and has been implicated in the virulence of a number of Gram negative pathogens. In this study it is shown that the CpxA/R TCS regulates the expression of a potentially novel invasin called SinH. SinH is found in a number of invasive strains of E. coli and Salmonella. Moreover work presented here shows that a critical mechanism underpinning AIEC persistence in macrophages is the repair of DNA bases damaged by macrophage oxidants. Together these findings provide evidence to suggest that AIEC are a diverse group of E. coli and possess diverse molecular mechanisms and virulence factors that contribute to the AIEC phenotype. In addition, AIEC may have gone through different evolutionary histories acquiring various molecular mechanisms ultimately culminating in the AIEC phenotype. The gastrointestinal (GI) tract harbors a diverse microbiota; most are symbiotic or commensal however some bacteria have the potential to cause disease (pathobiont). The work presented here provides evidence to support the model that AIEC are pathobionts. AIEC strains can be carried as commensals in healthy guts however, when the intestinal homeostasis is disrupted, such as in the compromised gut of CD patients, AIEC may behave as opportunistic pathogens and cause and/or contribute to disease by driving intestinal inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Vaccinia virus, the prototype member of the orthopoxviruses, is the largest and the most complex virus known. After replication of its genome and expression of the viral proteins, vaccinia undergoes a complicated assembly process which produces two distinct infectious forms. The first of these, the intracellular mature virus (IMV), develops from the immature virion (IV) after packaging of the genome and cleavage of the core proteins. During the transition of the IV to the IMV, a new core structure develops in the centre of the virion, concomitantly with the appearance of spike-like structures which extend between this core and the surrounding membranes of the IMV. I describe the characterization of p39 (gene A4L) which is hypothesized to be one component of these spikes. p39 is a core protein, but has strong associations with the membranes surrounding the IMV, possibly due to an interaction with p21 (A17L). Due to its location between the core and the membranes of the IMV, p39 is ideally situated to act as a matrix-like linker protein and may play a role in the formation of the core during the transition of the IV to the IMV. The IMV is subsequently wrapped by a membrane cisterna derived from the trans Golgi network, to form the intracellular enveloped virus (IEV). I show that the IEV can co-opt the actin cytoskeleton of the host cell in order to induce the formation of actin tails which extend from one side of the virion. These actin tails propel the virus particle, both intra- and intercellularly, at speeds of up to 2.8µm/min. On reaching the plasma membrane, the virus particles project out from the cell surface at the tip of virally induced microvilli. The outer membrane of the IEV is thought to fuse with the plasma membrane at the tip of these projections, thus exposing the second infectious form of vaccinia. This is thought to be the means by which the cell-associated enveloped virus is presented to neighbouring cells, thereby facilitating the direct cell-to-cell spread of virus particles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crohn’s disease (CD) is a chronic, relapsing inflammatory condition affecting the gastrointestinal tract of humans, of which there is currently no cure. The precise etiology of CD is unknown, although it has become widely accepted that it is a multifactorial disease which occurs as a result of an abnormal immune response to commensal enteric bacteria in a genetically susceptible host. Recent studies have shown that a new group of Escherichia coli, called Adherent Invasive Escherichia coli (AIEC) are present in the guts of CD patients at a higher frequency than in healthy subjects, suggesting that they may play a role in the initiation and/or maintenance of the inflammation associated with CD. Two phenotypes define an AIEC and differentiate them from other groups of E. coli. Firstly, AIEC can adhere to and invade epithelial cells; and secondly, they can replicate in macrophages. In this study, we use a strain of AIEC which has been isolated from the colonic mucosa of a CD patient, called HM605, to examine the relationship between AIEC and the macrophage. We show, using a systematic mutational approach, that while the Tricarboxylic acid (TCA) cycle, the glyoxylate pathway, the Entner-Doudoroff (ED) pathway, the Pentose Phosphate (PP) pathway and gluconeogenesis are dispensable for the intramacrophagic growth of HM605, glycolysis is an absolute requirement for the ability of this organism to replicate intracellularly. We also show that HM605 activates the inflammasome, a major driver of inflammation in mammals. Specifically, we show that macrophages infected with HM605 produce significantly higher levels of the pro-inflammatory cytokine IL-1β than macrophages infected with a non-AIEC strain, and we show by immunoblotting that this is due to cleavage of caspase-1. We also show that macrophages infected with HM605 exhibit significantly higher levels of pyroptosis, a form of inflammatory cell death, than macrophages infected with a non-AIEC strain. Therefore, AIEC strains are more pro-inflammatory than non-AIEC strains and this may have important consequences in terms of CD pathology. Moreover, we show that while inflammasome activation by HM605 is independent of intracellular bacterial replication, it is dependent on an active bacterial metabolism. Through the establishment of a genetic screen aimed at identifying mutants which activate the inflammasome to lower levels than the wild-type, we confirm our observation that bacterial metabolism is essential for successful inflammasome activation by HM605 and we also uncover new systems/structures that may be important for inflammasome activation, such as the BasS/BasR two-component system, a type VI secretion system and a K1 capsule. Finally, in this study, we also identify a putative small RNA in AIEC strain LF82, which may be involved in modulating the motility of this strain. Overall this works shows that, in the absence of specialised virulence factors, the ability of AIEC to metabolise within the host cell may be a key determinant of its pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Gastro-Intestinal (GI) tract is a unique region in the body. Our innate immune system retains a fine homeostatic balance between avoiding inappropriate inflammatory responses against the myriad commensal microbes residing in the gut while also remaining active enough to prevent invasive pathogenic attack. The intestinal epithelium represents the frontline of this interface. It has long been known to act as a physical barrier preventing the lumenal bacteria of the gastro-intestinal tract from activating an inflammatory immune response in the immune cells of the underlying mucosa. However, in recent years, an appreciation has grown surrounding the role played by the intestinal epithelium in regulating innate immune responses, both in the prevention of infection and in maintaining a homeostatic environment through modulation of innate immune signalling systems. The aim of this thesis was to identify novel innate immune mechanisms regulating inflammation in the GI tract. To achieve this aim, we chose several aspects of regulatory mechanisms utilised in this region by the innate immune system. We identified several commensal strains of bacteria expressing proteins containing signalling domains used by Pattern Recognition Receptors (PRRs) of the innate immune system. Three such bacterial proteins were studied for their potentially subversive roles in host innate immune signalling as a means of regulating homeostasis in the GI tract. We also examined differential responses to PRR activation depending on their sub-cellular localisation. This was investigated based on reports that apical Toll-Like Receptor (TLR) 9 activation resulted in abrogation of inflammatory responses mediated by other TLRs in Intestinal Epithelial Cells (IECs) such as basolateral TLR4 activation. Using the well-studied invasive intra-cellular pathogen Listeria monocytogenes as a model for infection, we also used a PRR siRNA library screening technique to identify novel PRRs used by IECs in both inhibition and activation of inflammatory responses. Many of the PRRs identified in this screen were previously believed not to be expressed in IECs. Furthermore, the same study has led to the identification of the previously uncharacterised TLR10 as a functional inflammatory receptor of IECs. Further analysis revealed a similar role in macrophages where it was shown to respond to intracellular and motile pathogens such as Gram-positive L.monocytogenes and Gram negative Salmonella typhimurium. TLR10 expression in IECs was predominantly intracellular. This is likely in order to avoid inappropriate inflammatory activation through the recognition of commensal microbial antigens on the apical cell surface of IECs. Moreover, these results have revealed a more complex network of innate immune signalling mechanisms involved in both activating and inhibiting inflammatory responses in IECs than was previously believed. This contribution to our understanding of innate immune regulation in this region has several direct and indirect benefits. The identification of several novel PRRs involved in activating and inhibiting inflammation in the GI tract may be used as novel therapeutic targets in the treatment of disease; both for inducing tolerance and reducing inflammation, or indeed, as targets for adjuvant activation in the development of oral vaccines against pathogenic attack.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has become clear that inflammation is beneficial to man, there are situations though that the inflammatory response causes damage to the host that is harmful to health. When the inflammatory response fails or is too strong, the health of the host is damaged and disease can occur. The implication of intestinal disease caused by an ineffective immune response is of great social and economic burden to society. The overarching purpose of this thesis is to assess inflammatory signalling targets associated with immune mediated disorders such as IBD, IBS and inflammatory liver disease. By assessing these targets and modifying their function I hope to contribute and expand further the pre-existing information on these disorders and improve the therapeutic interventions available in these debilitating conditions. I will assess the role of inflammation in disorders of the GI tract and liver IBD, IBS, hepatic inflammatory injury and furthermore, I will use pharmaceutical agents to activate and suppress components of the immune system. I will examine the inflammatory response in experimental models of disease for IBD and liver injury, I will attempt to alter these pathways using pharmaceutical intervention to delineate the disease causing mechanism that may lead to clinically relevant therapeutic interventions. In regards to IBS, I will attempt to improve the existing knowledge that exists in relation to the pathogenesis of this functional bowel disorder. I will attempt to define a mechanism by which the low grade mucosal inflammation that has been demonstrated by others arises and what this inflammation is induced by. The overall aim of this thesis is to attempt to further understand the mechanisms behind GI and liver disease. Looking at the inflammatory response in these specific conditions and how they can be altered may lead to exciting new therapies for inflammatory conditions in the gastrointestinal tract.