975 resultados para Gas vacuum oil
Resumo:
This work has as main objective to find mathematical models based on linear parametric estimation techniques applied to the problem of calculating the grow of gas in oil wells. In particular we focus on achieving grow models applied to the case of wells that produce by plunger-lift technique on oil rigs, in which case, there are high peaks in the grow values that hinder their direct measurement by instruments. For this, we have developed estimators based on recursive least squares and make an analysis of statistical measures such as autocorrelation, cross-correlation, variogram and the cumulative periodogram, which are calculated recursively as data are obtained in real time from the plant in operation; the values obtained for these measures tell us how accurate the used model is and how it can be changed to better fit the measured values. The models have been tested in a pilot plant which emulates the process gas production in oil wells
Renewable energy and energy efficiency in Latin America and the Caribbean: constraints and prospects
Resumo:
Includes bibliography
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This paper presents the development of a knowledge-based system (KBS) prototype able to design natural gas cogeneration plants, demonstrating new features for this field. The design of such power plants represents a synthesis problem, subject to thermodynamic constraints that include the location and sizing of components. The project was developed in partnership with the major Brazilian gas and oil company, and involved interaction with an external consultant as well as an interdisciplinary team. The paper focuses on validation and lessons learned, concentrating on important aspects such as the generation of alternative configuration schemes, breadth of each scheme description created by the system, and its module to support economic feasibility analysis. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Because of the great metallurgical advances, the welded tubes by HF / ERW (High Frequency / Electrical Resistance Welding) have played a more active role in the oil and gas, gradually replacing tubes produced by other processes (UOE, SAW, and others) to deep water applications, in high and extremely low temperatures, highpressure conditions and in highly corrosive environments. However, studies have revealed that defects in the welded joints are in one of main causes of failures in pipelines. Associated with damage external and the stringent requirements of this sector, the welded joints become particularly critical for his toughness and the determination of this particular property is fundamental. This study aims to evaluate the toughness of the HF / ERW pipes in HSLA steel API X70 class, used in pipelines transport systems of gas and oil from data obtained with CTOD tests (Crack Tip Opening Displacement). The main objectives of this project are: mechanical and microstructural characterization of steels API X70 manufactured in Brazil; and evaluation of the toughness of weld process by HF / ERW steel API X70 national. After having the tests done, mechanical, chemical and metallurgical, we have the conclusion that those pipe are in agreement to API 5L 42ª edition for X70MO and the toughness behaves like the expected
Resumo:
Taking into account the consistent and important expansion of the Brazilian oil and gas pipelines network in the last years, this work discusses how these lines are planned regarding the continental environmental context. Its central objective is to show how studies to select alternative lines are made before a gas or oil pipeline is installed. These studies help to choose routes in which the environment is less affected by the pipeline, and use specific methods, technologies, and tools. Bibliographical studies combined with interviews and discussions with experts of the oil and gas sector were used to support this monograph.
Resumo:
Pós-graduação em Geociências e Meio Ambiente - IGCE
Resumo:
For the decades to come can be foreseen that electricity and water will keep be playing a key role in the countries development, both can be considered the most important energy vectors and its control can be crucial for governments, companies and leaders in general. Energy is essential for all human activities and its availability is critical to economic and social development. In particular, electricity, a form of energy, is required to produce goods, to provide medical assistance and basic civic services in education, to assure availability of clean water, to create conducive environment for prosperity and improvement, and to keep an acceptable quality of life. The way in which electricity is generated from different resources varies through the different countries. Nuclear energy controlled within reactors to steam production, gas, fuel-oil and coal fired in power stations, water, solar and wind energy among others are employed, sometimes not very efficiently, to produce electricity. The so call energy mix of an individual country is formed up by the contribution of each resource or form of energy to the electricity generation market of the so country. During the last decade the establishment of proper energy mixes for countries has gained much importance, and energy drivers should enforce long term plans and policies. Hints, reports and guides giving tracks on energy resources contribution are been developed by noticeable organisations like the IEA (International Energy Agency) or the IAEA (International Atomic Energy Agency) and the WEC (World Energy Council). This paper evaluates energy issues the market and countries are facing today regarding energy mix scheduling and panorama. This paper revises and seeks to improve methodology available that are applicable on energy mix plan definition. Key Factors are identified, established and assessed through this paper for the common implementation, the themes driving the future energy mix methodology proposal. Those have a clear influence and are closely related to future environmental policies. Key Factors take into consideration sustainability, energy security, social and economic growth, climate change, air quality and social stability. The strength of the Key Factors application on energy system planning to different countries is contingent on country resources, location, electricity demand and electricity generation industry, technology available, economic situation and prospects, energy policy and regulation
Resumo:
Una de las medidas de mitigación del Cambio Climático propuestas al amparo de la ONU por el IPCC (Intergovermental Panel on Climate Change) en su ‘Informe de Síntesis 2007’ consiste en la puesta en marcha de acciones para la captación y almacenamiento de dióxido de carbono, existiendo tres tipos de formaciones geológicas idóneas para el almacenamiento geológico de este gas: yacimientos de petróleo y gas agotados, capas de carbón no explotables y formaciones salinas profundas. En el caso de las formaciones salinas profundas, el problema fundamental para llevar a cabo un estudio de almacenamiento de CO2, reside en la dificultad de obtención de datos geológicos del subsuelo en una cierta estructura seleccionada, cuyas características pueden ser a priori idóneas para la inyección y almacenamiento del gas. Por este motivo la solución para poder analizar la viabilidad de un proyecto de almacenamiento en una estructura geológica pasa por la simulación numérica a partir de la modelización 3D del yacimiento. Los métodos numéricos permiten simular la inyección de un caudal determinado de dióxido de carbono desde un pozo de inyección localizado en una formación salina. En la presente tesis se ha definido una metodología de simulación de almacenamiento geológico de CO2, como contribución a la solución al problema del Cambio Climático, aplicada de forma concreta a la estructura BG-GE-08 (oeste de la Comunidad de Murcia). Esta estructura geológica ha sido catalogada por el IGME (Instituto Geológico y Minero de España) como idónea para el almacenamiento de dióxido de carbono, dada la existencia de una capa almacén confinada entre dos capas sello. ABSTRACT One of the climate change mitigation proposals suggested by the IPCC (Intergovermental Panel on Climate Change) in its ‘Synthesis Report 2007’ involves the launch of actions for capturing and storing carbon dioxide, existing three different geological structures suitable for gas storage: oil and gas reservoirs already drained, useless coal layers and deep saline structures. In case of deep saline structures, the main problem to develop a study of CO2 storage is the difficulty of obtaining geological data for some selected structure with characteristics that could be suitable for injection and gas storage. According to this situation, the solution to analyze the feasibility of a storage project in a geological structure will need numerical simulation from a 3D model. Numerical methods allow the simulation of the carbon dioxide filling in saline structures from a well, used to inject gas with a particular flow. In this document a simulation methodology has been defined for geological CO2 storage, as a contribution to solve the Climatic Change problem, applied to the structure BG-GE-08 (west of Murcia region). This geological structure has been classified by the IGME (Geological and Mining Institute of Spain) as suitable for the storage of carbon dioxide given the existence of a storage layer confined between two seal layers.
Resumo:
All around the ITER vacuum vessel, forty-four ports will provide access to the vacuum vessel for remotehandling operations, diagnostic systems, heating, and vacuum systems: 18 upper ports, 17 equatorialports, and 9 lower ports. Among the lower ports, three of them will be used for the remote handlinginstallation of the ITER divertor. Once the divertor is in place, these ports will host various diagnosticsystems mounted in the so-called diagnostic racks. The diagnostic racks must allow the support andcooling of the diagnostics, extraction of the required diagnostic signals, and providing access and main-tainability while minimizing the leakage of radiation toward the back of the port where the humans areallowed to enter. A fully integrated inner rack, carrying the near plasma diagnostic components, will bean stainless steel structure, 4.2 m long, with a maximum weight of 10 t. This structure brings water forcooling and baking at maximum temperature of 240?C and provides connection with gas, vacuum andelectric services. Additional racks (placed away from plasma and not requiring cooling) may be requiredfor the support of some particular diagnostic components. The diagnostics racks and its associated exvessel structures, which are in its conceptual design phase, are being designed to survive the lifetimeof ITER of 20 years. This paper presents the current state of development including interfaces, diagnos-tic integration, operation and maintenance, shielding requirements, remote handling, loads cases anddiscussion of the main challenges coming from the severe environment and engineering requirements.
Resumo:
El objetivo de esta tesis es el estudio de la respuesta estructural de los gasoductos sometidas a solicitaciones estáticas y dinámicas, enfocando prioritariamente en la respuesta sísmica. Los gasoductos, como las tuberías en general, se utilizan principalmente para la transportación de fluidos, como agua, gas o petróleo, de ahí la importancia de que el diseño y la estructura se realicen adecuadamente. La tubería debe ser capaz de soportar tanto los efectos de cargas estáticas como las debidas al peso propio o de la presión de la tierra, así como los diferentes tipos de cargas dinámicas ocurridas durante un evento sísmico, como los debidos a las ondas o el desplazamiento de fallas. En la primera parte de la tesis se describen aspectos generales de la tubería y su uso, y se da una breve historia de uso en la industria y las redes de abastecimiento urbano. Aparte de otros aspectos, se discuten las ventajas y desventajas de los diferentes materiales de las tuberías. En la segunda parte de la tesis se desarrollan las ecuaciones de equilibrio de una sección transversal de la tubería bajo cargas estáticas, tales como la presión interna, peso propio, presión de la tierra y las cargas externas. Un número de diferentes combinaciones de carga es analizado por medio de programas codificados como Matlab, los cuales se han desarrollado específicamente para este propósito. Los resultados se comparan con los obtenidos en Ansys utilizando un código de elementos finitos. En la tercera parte se presenta la respuesta dinámica de las tuberías, que abarca los efectos de las ondas y los desplazamientos de fallas. Se presentan las características relevantes del suelo como las velocidades de ondas, así como los métodos para estimar el desplazamiento máximo de las fallas. Un estudio paramétrico se emplea para ilustrar la influencia de estos parámetros en la respuesta estructural de la tubería. Con este fin se han utilizado dos métodos, el Pseudoestático y el Simplificado. En la última parte de la tesis son desarrollados los modelos de elementos finitos que permiten simular adecuadamente el comportamiento no lineal del suelo y la tubería. Los resultados se comparan con los obtenidos por un método simplificado utilizado con frecuencia que fue propuesto por Kennedy en 1977. Estudios paramétricos se presentan con el fin de examinar la validez de las hipótesis del método de Kennedy. La tesis concluye con recomendaciones que indican en qué casos los resultados obtenidos por el método de Kennedy son conservadores y cuando es preferible utilizar modelos de elementos finitos para estimar la respuesta de las tuberías durante los terremotos. ABSTRACT The subject of this thesis is the study of the structural response of pipelines subjected to static and dynamic loads with special attention to seismic design loads. Pipelines, as pipes in general, are used primarily for the transportation of fluids like water, gas or oil, hence the importance of an adequate design and structural behaviour. The pipe must be able to withstand both the effects of static loads like those due to self-weight or earth pressure as well as the different types of dynamic loads during a seismic event like those due to wave passing or fault displacements. In the first part of the thesis general aspects of pipelines and their use are described and a brief history of their usage in industry and for urban supply networks is given. Apart from other aspects, the advantages and disadvantages of different pipe materials are discussed. In the second part of the thesis the equilibrium equations of a transverse section of the pipe under static loads such as internal pressure, self-weight, earth pressure and external loads are developed. A number of different load combinations is analysed by means of programs coded in Matlab that have been specifically developed for this purpose. The results are compared to those obtained with the commercial Finite Element code Ansys. In the third part the dynamic response of pipelines during earthquakes is presented, covering the effects of passing waves and fault displacements. Relevant soil characteristics like wave propagation velocities as well as methods to estimate the maximum fault displacements are presented. A parametric study is employed to illustrate the influences of these parameters on the structural response of the pipe. To this end two methods have been used, the Pseudostatic and the Simplified method. In the last part of the thesis Finite Element models are developed which allow to adequately simulate the nonlinear behaviour of the soil and the pipe. The results are compared to those obtained by a frequently used simplified method which was proposed by Kennedy in 1977. Parametric studies are presented in order to examine the validity of the hypotheses Kennedys’ method is based on. The thesis concludes with recommendations indicating in which cases the results obtained by Kennedy’s method are conservative and when it is preferable to use Finite Element models to estimate the response of pipelines during earthquakes.