994 resultados para Gas diffusion electrodes


Relevância:

30.00% 30.00%

Publicador:

Resumo:

MoS2 nanotube bundles along with embedded nested fullerenes were formed in a gas phase reaction of molybdenum carbonyl and H2S gas with the assistance of I2. The amorphous Mo-S-I intermediates obtained through quenching a modified MOCVD reaction in a large temperature gradient were annealed at elevated temperature in an inert atmosphere. Under the influence of the iodine the amorphous precursor formed a surface film with an enhanced mobility of the molybdenum and sulfur components. Point defects within the MoS2 layers combined with the enhanced surface diffusion lead to a scrolling of the inherently instable MoS2 lamellae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

1. The electric field strength between coplanar electrodes is calculated employing "conformal transformations." The electron multiplication factor is then computed in the nonuniform field region. These calculations have been made for different gap lengths, voltages, and also for different gases and gas pressures. The configuration results in a curved discharge path. It is found that the electron multiplication is maximum along a particular flux line and the prebreakdown discharge is expected to follow this flux line. Experimental tubes incorporating several coplanar gaps have been fabricated. Breakdown voltages have been measured for various discharge gaps and also for various gases such as xenon, helium, neon, argon, and neon-argon mixture (99.5:0.5) at different filling pressures. The variation of breakdown voltage with pressure and gap length is discussed. The observed discharge paths are curved and this is in agreement with theoretical results. A few experimental single-digit coplanar gas-discharge displays (CGDD's) with digit height of 5 cm have been fabricated and dependence of their characteristics on various parameters, including spacing between top glass plate and bottom substrate, have been studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A numerical analysis of the gas dynamic structure of a two-dimensional laminar boundary layer diffusion flame over a porous flat plate in a confined flow is made on the basis of the familiar boundary layer and flame sheet approximations neglecting buoyancy effects. The governing equations of aerothermochemistry with the appropriate boundary conditions are solved using the Patankar-Spalding method. The analysis predicts the flame shape, profiles of temperature, concentrations of variousspecies, and the density of the mixture across the boundary layer. In addition, it also predicts the pressure gradient in the flow direction arising from the confinement ofthe flow and the consequent velocity overshoot near the flame surface. The results of thecomputation performed for an n-pentane-air system are compared with experimental data andthe agreement is found to be satisfactory.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Rare-gas chemistry is of growing interest, and the recent advances include the "insertion" of a Xe atom into OH and water in the rare-gas hydrides HXeO and HXeOH. The insertion of Xe atoms into the H-C bonds of hydrocarbons was also demonstrated for HXeCC, HXeCCH and HXeCCXeH, the last of which was the first rare-gas hydride containing two rare-gas atoms. We describe the preparation and characterization of a new rare-gas compound, HXeOXeH. HXeOXeH was prepared in solid xenon by photolysis of a suitable precursor, for example water, and subsequent mobilization of the photoproducts. The experimental identification was carried out by FTIR spectroscopy, isotopic substitution and by use of various precursors. The photolytical and thermal stability of the new rare-gas hydride was also studied. The experimental work was supported by extensive quantum chemical calculations provided by our co-workers. HXeOXeH forms in a cryogenic xenon matrix from neutral O and H atoms in a two-step diffusion-controlled process involving HXeO as an intermediate [reactions (1) and (2)]. This formation mechanism is unique in that a rare-gas hydride is formed from another rare-gas hydride. H + Xe + O → HXeO (1) HXeO + Xe + H → HXeOXeH (2) Similarly to other rare-gas hydrides, HXeOXeH has a strongly IR-active H-Xe stretching vibration, allowing its spectral detection at 1379.3 cm-1. HXeOXeH is a very high-energy metastable species, yet thermally more stable than many other rare-gas hydrides. The calculated bending barrier of 0.57 eV, is not enough to explain the observed stability, and HXeOXeH might be affected by additional stabilization from the solid xenon environment. Chemical bonding between xenon and environmentally abundant species like water is of particular importance due to the “missing-xenon” problem. The relatively high thermal stability of HXeOXeH compared to other oxygen containing rare-gas compounds is relevant in this respect. Our work also raises the possibility of polymeric (–Xe–O)n networks, similarly to the computationally studied (XeCC)n polymers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coal seam gas operations produce significant quantities of associated water which often require demineralization. Ion exchange with natural zeolites has been proposed as a possible approach. The interaction of natural zeolites with solutions of sodium chloride and sodium bicarbonate in addition to coal seam gas water is not clear. Hence, we investigated ion exchange kinetics, equilibrium, and column behaviour of an Australian natural zeolite. Kinetic tests suggested that the pseudo first order equation best simulated the data. Intraparticle diffusion was part of the rate limiting step and more than one diffusion process controlled the overall rate of sodium ion uptake. Using a constant mass of zeolite and variable concentration of either sodium chloride or sodium bicarbonate resulted in a convex isotherm which was fitted by a Langmuir model. However, using a variable mass of zeolite and constant concentration of sodium ions revealed that the exchange of sodium ions with the zeolite surface sites was in fact unfavourable. Sodium ion exchange from bicarbonate solutions (10.3 g Na/kg zeolite) was preferred relative to exchange from sodium chloride solutions (6.4 g Na/kg zeolite). The formation of calcium carbonate species was proposed to explain the observed behaviour. Column studies of coal seam gas water showed that natural zeolite had limited ability to reduce the concentration of sodium ions (loading 2.1 g Na/kg zeolite) with rapid breakthrough observed. It was concluded that natural zeolites may not be suitable for the removal of cations from coal seam gas water without improvement of their physical properties.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on the measurements of Alcock and Zador, Grundy et al. estimated an uncertainty of the order of +/- 5 kJ mol(-1) for the standard Gibbs energy of formation of MnO in a recent assessment. Since the evaluation of thermodynamic data for the higher oxides Mn3O4, Mn2O3, and MnO2 depends on values for MnO, a redetermination of its Gibbs energy of formation was undertaken in the temperature range from 875 to 1300 K using a solid-state electrochemical cell incorporating yttria-doped thoria (YDT) as the solid electrolyte and Fe + Fe1-delta O as the reference electrode. The cell can be presented as Pt, Mn + MnO/YDT/Fe + Fe1+delta O, Pt Since the metals Fe and Mn undergo phase transitions in the temperature range of measurement, the reversible emf of the cell is represented by the three linear segments. Combining the emf with the oxygen potential for the reference electrode, the standard Gibbs energy of formation of MnO from alpha-Mn and gaseous diatomic oxygen in the temperature range from 875 to 980 K is obtained as: Delta G(f)(o)/Jmol(-1)(+/- 250) = -385624 + 73.071T From 980 to 1300 K the Gibbs energy of formation of MnO from beta-Mn and oxygen gas is given by: Delta G(f)(o)/Jmol(-1)(+/- 250) = -387850 + 75.36T The new data are in excellent agreement with the earlier measurements of Alcock and Zador. Grundy et al. incorrectly analyzed the data of Alcock and Zador showing relatively large difference (+/- 5 kJ mol(-1)) in Gibbs energies of MnO from their two cells with Fe + Fe1-delta O and Ni + NiO as reference electrodes. Thermodynamic data for MnO is reassessed in the light of the new measurements. A table of refined thermodynamic data for MnO from 298.15 to 2000 K is presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using Huxley's solution of the diffusion equation for electron-attaching gases, the ratio of diffusion coefficient D to mobility μ for electrons in dry air was measured over the range 3·06 × 10-17 gas density (cm -3). The results agreed with those of earlier workers who used the diffusion equation for non-attaching gases.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrochemical reduction of oxygen has been studied on gold, boron-doped diamond (BDD) and glassy carbon (GC) electrodes in a ternary eutectic mixture of acetamide (CH3CONH2), urea (NH2CONH2) and ammonium nitrate (NH4NO3). Cyclic voltammetry (CV), differential pulse voltammetry (DPV), chronoamperometry and rotating disk electrode (RDE) voltammetry techniques have been employed to follow oxygen reduction reaction (ORR). The mechanism for the electrochemical reduction of oxygen on polycrystalline gold involves 2-step. 2-electron pathways of O-2 to H2O2 and further reduction of H2O2 to H2O. The first 2-electron reduction of O-2 to H2O2 passes through superoxide intermediate by 1-electron reduction of oxygen. Kinetic results suggest that the initial 1-electron reduction of oxygen to HO2 is the rate-determining step of ORR on gold surfaces. The chronoamperometric and ROE studies show a potential dependent change in the number of electrons on gold electrode. The oxygen reduction reaction on boron-doped diamond (BOO) seems to proceed via a direct 4-electron process. The reduction of oxygen on the glassy carbon (GC) electrode is a single step, irreversible, diffusion limited 2-electron reduction process to peroxide. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Condensation from the vapor state is an important technique for the preparation of nanopowders. Levitational gas condensation is one such technique that has a unique ability of attaining steady state. Here, we present the results of applying this technique to an iron-copper alloy (96Fe-4Cu). A qualitative model of the process is proposed to understand the process and the characteristics of resultant powder. A phase diagram of the alloy system in the liquid-vapor region was calculated to help understand the course of condensation, especially partitioning and coring during processing. The phase diagram could not explain coring in view of the simultaneous occurrence of solidification and the fast homogenization through diffusion in the nanoparticles; however, it could predict the very low levels of copper observed in the levitated drop. The enrichment of copper observed near the surface of the powder was considered to be a manifestation of the lower surface energy of copper compared with that of iron. Heat transfer calculations indicated that most condensed particles can undergo solidification even when they are still in the proximity of the levitated drop. It helped us to predict the temperature and the cooling rate of the powder particles as they move away from the levitated drop. The particles formed by the process seem to be single domain, single crystals that are magnetic in nature. They, thus, can agglomerate by forming a chain-like structure, which manifests as a three-dimensional network enclosing a large unoccupied space, as noticed in scanning electron microscopy and transmission electron microscopy studies. This also explains the observed low packing density of the nanopowders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The conductivity of MgAl2O4 has been measured at 1273, 1473 and 1673 K as a function of the partial pressure of oxygen ranging from 105 to 10−14 Pa. The MgAl2O4 pellet, sandwiched between two platinum electrodes, was equilibrated with a flowing stream of either Ar + O2, CO + CO2 or Ar + H2 + H2O mixture of known composition. The gas mixture established a known oxygen partial pressure. All measurements were made at a frequency of 1 kHz. These measurements indicate pressure independent ionic conductivity in the range 1 to 10−14 Pa at 1273 K, 10−1 to 10−12 Pa at 1473 K and 10−1 to 10−4 Pa at 1673 K. The activation energy for ionic conduction is 1·48 eV, close to that for self-diffusion of Mg2+ ion in MgAl2O4 calculated from the theoretical relation of Glyde. Using the model, the energy for cation vacancy formation and activation energy for migration are estimated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A theory is developed for diffusion-limited charge transfer on a non-fractally rough electrode. The perturbation expressions are obtained for concentration, current density and measured diffusion-limited current for arbitrary one- and two-dimensional surface profiles. The random surface model is employed for a rough electrode\electrolyte interface. In this model the gross geometrical property of an electrochemically active rough surface - the surface structure factor-is related to the average electrode current, current density and concentration. Under short and long time regimes, various morphological features of the rough electrodes, i.e. excess area (related to roughness slope), curvature, correlation length, etc. are related to the (average) current transients. A two-point Pade approximant is used to develop an all time average current expression in terms of partial morphological features of the rough surface. The inverse problem of predicting the surface structure factor from the observed transients is also described. Finally, the effect of surface roughness is studied for specific surface statistics, namely a Gaussian correlation function. It is shown how the surface roughness enhances the overall diffusion-limited charge transfer current.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have developed an alternate description of dynamics of nucleation in terms of an extended set of order parameters. The order parameters consist of an ordered set of kth largest clusters, ordered such that k = 1 is the largest cluster in the system, k = 2 is the second largest cluster, and so on. We have derived an analytic expression for the free energy for the kth largest cluster, which is in excellent agreement with the simulated results. At large supersaturation, the free energy barrier for the growth of the kth largest cluster disappears and the nucleation becomes barrierless. The major success of this extended theoretical formalism is that it can clearly explain the observed change in mechanism at large metastability P. Bhimalapuram et al., Phys. Rev. Lett. 98, 206104 (2007)] and the associated dynamical crossover. The classical nucleation theory cannot explain this crossover. The crossover from activated to barrierless nucleation is found to occur at a supersaturation where multiple clusters cross the critical size. We attribute the crossover as the onset of the kinetic spinodal. We have derived an expression for the rate of nucleation in the barrierless regime by modeling growth as diffusion on the free energy surface of the largest cluster. The model reproduces the slower increase in the rate of growth as a function of supersaturation, as observed in experiments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nucleation at large metastability is still largely an unsolved problem, even though it is a problem of tremendous current interest, with wide-ranging practical value, from atmospheric research to materials science. It is now well accepted that the classical nucleation theory (CNT) fails to provide a qualitative picture and gives incorrect quantitative values for such quantities as activation-free energy barrier and supersaturation dependence of nucleation rate, especially at large metastability. In this paper, we present an alternative formalism to treat nucleation at large supersaturation by introducing an extended set of order parameters in terms of the kth largest liquid-like clusters, where k = 1 is the largest cluster in the system, k = 2 is the second largest cluster and so on. At low supersaturation, the size of the largest liquid-like cluster acts as a suitable order parameter. At large supersaturation, the free energy barrier for the largest liquid-like cluster disappears. We identify this supersaturation as the one at the onset of kinetic spinodal. The kinetic spinodal is system-size-dependent. Beyond kinetic spinodal many clusters grow simultaneously and competitively and hence the nucleation and growth become collective. In order to describe collective growth, we need to consider the full set of order parameters. We derive an analytic expression for the free energy of formation of the kth largest cluster. The expression predicts that, at large metastability (beyond kinetic spinodal), the barrier of growth for several largest liquid-like clusters disappears, and all these clusters grow simultaneously. The approach to the critical size occurs by barrierless diffusion in the cluster size space. The expression for the rate of barrier crossing predicts weaker supersaturation dependence than what is predicted by CNT at large metastability. Such a crossover behavior has indeed been observed in recent experiments (but eluded an explanation till now). In order to understand the large numerical discrepancy between simulation predictions and experimental results, we carried out a study of the dependence on the range of intermolecular interactions of both the surface tension of an equilibrium planar gas-liquid interface and the free energy barrier of nucleation. Both are found to depend significantly on the range of interaction for the Lennard-Jones potential, both in two and three dimensions. The value of surface tension and also the free energy difference between the gas and the liquid phase increase significantly and converge only when the range of interaction is extended beyond 6-7 molecular diameters. We find, with the full range of interaction potential, that the surface tension shows only a weak dependence on supersaturation, so the reason for the breakdown of CNT (with simulated values of surface tension and free energy gap) cannot be attributed to the supersaturation dependence of surface tension. This remains an unsettled issue at present because of the use of the value of surface tension obtained at coexistence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gas-phase controlled absorption of ammonia in foams made of solutions of sulphuric acid has been studied experimentally. Effects of gas-phase concentration of ammonia and type of surfactant on the performance of the foam-bed reactor are investigated. Gas-phase controlled absorption from a spherical bubble is anaylzed using the asymptotic value of Sherwood number (Sh = 6.58), for both negligible as well as significant changes in the volume of the bubble. The experimental data are shown to be in good agreement with the single-stage model of the foam-bed reactor using these asymptotic sub-models, as well as the diffusion-in-sphere analysis available in literature. Influence of effective diffusivity on the time dependence of fractional gas absorption has been found to be unimportant for foam columns with large times of contact. The asymptotic sub-models have been compared and use of the rigid-sphere asymptotic sub-model is recommended for foam columns of practical relevence.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Phase relations in the system Ca-Pb-O at 1100 K have been determined by equilibrating 18 compositions in the ternary and identifying the phases present in quenched samples by X-ray diffraction and energy dispersive X-ray analysis (EDX). Only one ternary compound Ca2PbO4 was found to be present. The compound coexists with CaO and PbO. The intermetallic compounds Ca2Pb, Ca5Pb3 and CaPb and liquid alloys are in equilibrium with CaO. The standard Gibbs energies of formation of Ca2PbO4 (880 - 1100 K) and Pb3O4 (770 - 910 K) were determined using solid-state cells based on yttria-stabilized zirconia as the solid electrolyte. Pure oxygen gas at 0.1 MPa was used as the reference electrode. For measurements on Ca2PbO4, a novel cell design with three electrodes in series, separated by solid electrolyte membranes, was used to avoid polarization of the electrode containing three solid phases. Two three-phase electrodes were used. The first absorbs the electrochemical flux of oxygen from the reference electrode to the measuring electrode. The other three-phase electrode, which is unaffected by the oxygen flux through the solid electrolyte, is used for electromotive force (EMF) measurement. The results from EMF studies were cross-checked using thermogravimetry (TG) under controlled oxygen partial pressures. The stability of Pb3O4 was investigated using a conventional solid-state cell with RuO2 electrodes. The results can be summarized by the following equations: 2CaO + PbO +1/2O(2) --> Ca2PbO4 Delta(r)G degrees/J mol(-1) = (- 128340 + 93.21 T/K) +/- 200 3PbO + 1/2O(2) --> Pb3O4 Delta(r)G degrees/J mol(-1) = (- 70060 + 77.5 T/K) +/- 150