973 resultados para Ga
Resumo:
Diluted magnetic semiconductor (Ga,Mn)N were prepared by the implantation of Mn ions into GaN/Al2O3 substrate. Clear X-ray diffraction peak from (Ga,Mn)N is observed. It indicates that the solid solution (Ga,Mn)N phase was formed with the same lattice structure as GaN and different lattice constant. Magnetic hysteresis-loops of the (Ga,Mn)N were obtained at room temperature (293 K) with the coercivity of about 2496.97 A m(-1). (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
(Ga, Gd, As) film was fabricated by the mass-analyzed dual ion-beam epitaxy system with the energy of 1000 eV at room temperature. There was no new peak found except GaAs substrate peaks (0 0 2) and (0 0 4) by X-ray diffraction. Rocking curves were measured for symmetric (0 0 4) reflections to further yield the lattice mismatch information by employing double-crystal X-ray diffraction. The element distributions vary so much due to the ion dose difference from AES depth profiles. The sample surface morphology indicates oxidizing layer roughness is also relative to the Gd ion dose, which leads to islandlike feature appearing on the high-dose sample. One sample shows ferromagnetic behavior at room temperature. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
We have demonstrated stable self-starting passive mode locking in a diode-end-pumped Nd:Gd-0.8-Y0.5VO4 laser by using an In0.25Ga0.75As absorber grown at low temperature (LT In0.25Ga0.75As absorber). An In0.25Ga0.75As single-quantum-well absorber, which was grown directly on the GaAs buffer by use of the metal-organic chemical-vapor deposition technique, acts simultaneously as a passive mode-locking device and as an output coupler. Continuous-wave mode-locked pulses were obtained at 1063.5 nm. We achieved a pulse duration of 2.6 ps and an average output power of 2.15 W at a repetition rate of 96.4 MHz. (c) 2005 Optical Society of America.
Resumo:
We have studied magnetic and transport properties of insulating and metallic (Ga,Mn)As layers before and after annealing. A dramatic increase of the ferromagnetic transition temperature T-C by postgrowth annealing has been realized in both insulating and metallic (Ga,Mn)As. The as-grown insulating (Ga,Mn)As can be turned into metallic by the low-temperature annealing. For all the metallic (Ga,Mn)As, a characteristic feature in the temperature dependence of sheet resistance appears around T-C. This phenomenon may provide a simple and more convenient method to determine the T-C of metallic (Ga,Mn)As compared with superconducting quantum interference device (SQUID) measurement. Moreover, the T-C of the metallic (Ga,Mn)As obtained by this way is in good agreement with that measured by a SQUID magnetometer. (C) 2005 American Institute of Physics.
Resumo:
Zincblende Mn-rich Mn(Ga)As nanoclusters embedded in GaAs matrices are fabricated by in situ postgrowth annealing diluted magnetic semiconductor (Ga,Mn)As films with Mn concentration ranging from 2.6% to 8% at 650 degrees C. Magnetization measurements show that memory effect and slow magnetic relaxation, the typical characteristics of the spin-glass-like phase, occur below the blocking temperature of 45 K in samples with high Mn concentration, while for samples with low Mn concentration, ferromagnetic order remains up to 360 K. The behavior of low-temperature spin dynamics can be explained by the hierarchical model. (c) 2007 American Institute of Physics.
Resumo:
Al0.58Ga0.42N epilayers are grown by ammonia gas source molecular beam epitaxy (NH3-MBE) on (0001) sapphire substrate using AlGaN buffer layer. The effects of the buffer layer growth temperature on the properties of Al0.58Ga0.42N epilayer are especially investigated. In-situ high-energy electron diffraction (RHEED), double-crystal X-ray diffraction (DCXRD), atomic force microscopy (AFM), photoconductivity measurement and cathodoluminescence (CL) are used to characterize the samples. It is found that high growth temperature of AlGaN buffer layer would improve the crystalline quality, surface smoothness, optical quality and uniformity of the Al0.58Ga0.42N epilayer. The likely reason for such improvements is also suggested. (C) 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
The three-dimensional morphology of In(Ga)As nanostructures embedded in a GaAs matrix is investigated by combining atomic force microscopy and removal of the GaAs cap layer by selective wet etching. This method is used to investigate how the morphology of In(Ga)As quantum dots changes upon GaAs capping and subsequent in situ etching with AsBr3. A wave function calculation based on the experimentally determined morphologies suggests that quantum dots transform into quantum rings during in situ etching. (c) 2007 American Institute of Physics.
Resumo:
A series of (Ga, Mn)As epilayers have been prepared on semi-insulating GaAs (001) substrates at 230 degrees C by molecular-beam epitaxy under fixed temperatures of Ga and Mn cells and varied temperatures of the As cell. By systematically studying the lattice constants, magnetic and magneto-transport properties in a self-consistent manner, we find that the concentration of As antisites monotonically increases with increasing As flux, while the concentration of interstitial Mn defects decreases with it. Such a trend sensitively affects the properties of (Ga, Mn)As epilayers. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
For both, (Al,Ga)N with low Al content grown on a GaN nucleation layer and (AI,Ga)N with high Al content gown on an AlN nucleation layer, the inhomogeneous distribution of the luminescence is linked to the distribution of defects, which may be due to inversion domains. In the former system, defect regions exhibit a much lower Al content than the nominal one leading to a splitting of the respective luminescence spectra. In the latter system, a domain-like growth is observed with a pyramidal surface morphology and non-radiative recombination within the domain boundaries. (c) 2007 WILEYNCH Verlag GmbH & Co. KGaA, Weinheim.
Resumo:
National Natural Science Foundation of China 10674129
Resumo:
The depth distribution of the hole density p in 500 nm-thick (Ga,Mn)As layers is investigated. From Raman scattering spectra, it is found that the gradients of p are opposite in the as-grown and annealed layers. At the region around the free surface, with increasing etching depth, p significantly increases in the as-grown layer; however, p decreases distinctly in the annealed layer. Then, in the bulk, p becomes almost homogeneous for both cases. The etching-depth dependence of Curie temperature obtained from magnetic measurements is in agreement with the distribution characterization of p. These results suggest that annealing induces outdiffusion of Mn interstitials towards the free surface, and incomplete outdiffusion during the growth leads to an accumulation of Mn interstitials around the free surface of the as-grown (Ga,Mn)As. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Time-resolved Kerr rotation measurement in the (Ga,Mn)As diluted magnetic semiconductor allows direct observation of the dynamical properties of the spin system of the magnetic ions and the spin-polarized holes. Experimental results show that the magnetic ions can be aligned by the polarized holes, and the time scales of spin alignment and relaxation take place in tens and hundreds of picoseconds, respectively. The Larmor frequency and effective g factor obtained in the Voigt geometry show an unusual temperature dependence in the vicinity of the Curie temperature due to the exchange coupling between the photoexcited holes and magnetic ions. Such a spin coherent precession can be amplified or destructed by two sequential excitation pulses with circularly copolarized or oppositely polarized helicity, respectively. (c) 2006 American Institute of Physics.
Resumo:
Zinc-blende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. Compared with the typical thickness [2-3 ML (ML denotes monolayers)] of zb-CrSb grown directly on GaAs, the thickness of zb-CrSb grown on (In,Ga)As has been increased largely; the maximum can be up to similar to 9 ML. High-resolution cross sectional transmission electron microscopy images show that the zb-CrSb layer is combined with (In,Ga)As buffer layer without any dislocations at the interface. (C) 2006 American Institute of Physics.
Resumo:
Zincblende CrSb (zb-CrSb) layers with room-temperature ferromagnetism have been grown on relaxed and strained (In,Ga)As buffer layers epitaxially prepared on (001) GaAs substrates by molecular-beam epitaxy. The structural characterizations of CrSb layers fabricated under the two cases are studied by using synchrotron grazing incidence x-ray diffraction (GID). The results of GID experiments indicate that no sign of second phase exists in all the zb-CrSb layers. Superconducting quantum interference device measurements demonstrate that the thickness of zb-CrSb layers grown on both relaxed and strained (In,Ga)As buffer layers can be increased to similar to 12 monolayers (similar to 3.6nm), compared to similar to 3 monolayers (similar to 1nm) on GaAs directly.
Resumo:
The structure and optical properties of In(Ga)As with the introduction of InGaAlAs or InAlAs seed dot layers are investigated. The area density and size homogeneity of the upper InGaAs dots are efficiently improved by the introduction of a buried layer of high-density dots. Our explanation for the realization of high density and size homogeneity dots is presented. When the GaAs spacer layer is too thin to cover the seed dots, the upper dots exhibit some optical properties like those of a quantum well. By analyzing the growth dynamics, we refer to this kind of dot as an empty-core dot. (C) 2003 American Institute of Physics.