982 resultados para GROUND-STATE ENERGY


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin-1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Revised Iowa Energy Conservation Plan: 1979-1980 is a blue print for the state's continued participation. The original Plan contained descriptions of more than 70 programs underway or conceived for state implementation with federal dollars. The Revised Plan contains only those programs to be funded in Federal dollars. The projects include five mandatory programs identified by DOE and several projects selected for funding by the Iowa Energy Policy Council (EPC), the policy making board which governs the state energy agency. The 18-member Council selected the conservation programs at its March 20-21, 1979 meeting. The Council retains the right to amend both the Plan and the budget at any time for the duration of the three-year program.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on the use of a local order measure to quantify the spatial ordering of a quantum dot array (QDA). By means of electron ground state energy analysis in a quantum dot pair, it is demonstrated that the length scale required for such a measure to characterize the opto-electronic properties of a QDA is of the order of a few QD radii. Therefore, as local order is the primary factor that affects the opto-electronic properties of an array of quantum dots of homogeneous size, this order was quantified through using the standard deviation of the nearest neighbor distances of the quantum dot ensemble. The local order measure is successfully applied to quantify spatial order in a range of experimentally synthesized and numerically generated arrays of nanoparticles. This measure is not limited to QDAs and has wide ranging applications in characterizing order in dense arrays of nanostructures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accurate extrapolations for the ground state energy per site of the one - dimensional Kondo chain system is obtained from exact finite system calculations carried out employing a valence bond scheme. An analysis of the ground state wave function indicates that the localized spin is quenched for all nonzero values of the Kondo exchange constant in one dimension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A density-functional approach on the hexagonal graphene lattice is developed using an exact numerical solution to the Hubbard model as the reference system. Both nearest-neighbour and up to third nearest-neighbour hoppings are considered and exchange-correlation potentials within the local density approximation are parameterized for both variants. The method is used to calculate the ground-state energy and density of graphene flakes and infinite graphene sheet. The results are found to agree with exact diagonalization for small systems, also if local impurities are present. In addition, correct ground-state spin is found in the case of large triangular and bowtie flakes out of the scope of exact diagonalization methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ground-state properties of the spin-(1/2 Heisenberg antiferromagnet on a square lattice are studied by using a simple variational wave function that interpolates continuously between the Néel state and short-range resonating-valence-bond states. Exact calculations of the variational energy for small systems show that the state with the lowest energy has long-range antiferromagnetic order. The staggered magnetization in this state is approximately 70% of its maximum possible value. The variational estimate of the ground-state energy is substantially lower than the value obtained for the nearest-neighbor resonating-valence-bond wave function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a one-dimensional version of the Kitaev model on a ring of size N, in which there is a spin S > 1/2 on each site and the Hamiltonian is J Sigma(nSnSn+1y)-S-x. The cases where S is integer and half-odd integer are qualitatively different. We show that there is a Z(2)-valued conserved quantity W-n for each bond (n, n + 1) of the system. For integer S, the Hilbert space can be decomposed into 2N sectors, of unequal sizes. The number of states in most of the sectors grows as d(N), where d depends on the sector. The largest sector contains the ground state, and for this sector, for S=1, d=(root 5+1)/2. We carry out exact diagonalization for small systems. The extrapolation of our results to large N indicates that the energy gap remains finite in this limit. In the ground-state sector, the system can be mapped to a spin-1/2 model. We develop variational wave functions to study the lowest energy states in the ground state and other sectors. The first excited state of the system is the lowest energy state of a different sector and we estimate its excitation energy. We consider a more general Hamiltonian, adding a term lambda Sigma W-n(n), and show that this has gapless excitations in the range lambda(c)(1)<=lambda <=lambda(c)(2). We use the variational wave functions to study how the ground-state energy and the defect density vary near the two critical points lambda(c)(1) and lambda(c)(2).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A one-dimensional coupled multi-physics based model has been developed to accurately compute the effects of electrostatic, mechanical, and thermal field interactions on the electronic energy band structure in group III-nitrides thin film heterostructures. Earlier models reported in published literature assumes electro-mechanical field with uniform temperature thus neglecting self-heating. Also, the effects of diffused interface on the energy band structure were not studied. We include these effects in a self-consistent manner wherein the transport equation is introduced along with the electro-mechanical models, and the lattice structural variation as observed in experiments are introduced at the interface. Due to these effects, the electrostatic potential distribution in the heterostructure is altered. The electron and hole ground state energies decrease by 5% and 9%, respectively, at a relative temperature of 700 K, when compared with the results obtained from the previously reported electro-mechanical model assuming constant and uniform temperature distribution. A diffused interface decreases the ground state energy of electrons and holes by about 11% and 9%, respectively, at a relative temperature of 700 K when compared with the predictions based on uniform temperature based electro-mechanical model. (C) 2013 AIP Publishing LLC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a funnel external potential model to investigate dynamic properties of ultracold Bose gas. By using variational method, we obtain the ground-state energy and density properties of ultracold Bose atoms. The results show that the ultracold Bose gas confined in a funnel potential experiences the transition from three-dimensional regime to quasi-one-dimensional regime in a small aspect ratio, and undergoes fermionization process as the aspect ratio increases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electronic structures of N quantum dot molecules (QDMs) are investigated theoretically in the framework of effective-mass envelope function theory. The electron and hole energy levels are calculated. In the calculations, the effects of finite offset and valence-band mixing are taken into account. The theoretical method can be used to calculate the electronic structures of any QDM. The results show that (1) electronic energy levels decrease monotonically and the energy difference between the N QDMs decreases as the quantum dot (QD) radius increases; (2) the electron energy level is lower and quantum confinement is smaller for the larger N QDM; (3) the hole ground state energy level is lower for the one dot QDM than N (greater 1) QDMs if the QD radius is larger than about 5 nm due to the valence-band mixing. The results are useful for the application of the N QDM to photoelectric devices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the framework of effective mass envelope function theory, the electronic states of the InAs/GaAs quantum ring are studied. Our model can be used to calculate the electronic states of quantum wells, quantum wires, and quantum dots. In calculations, the effects due to the different effective masses of electrons in rings and out rings are included. The energy levels of the electron are calculated in the different shapes of rings. The results indicate that the inner radius of rings sensitively changes the electronic states. The energy levels of the electron are not sensitively dependent on the outer radius for large rings. If decreasing the inner and outer radii simultaneously, one may increase the energy spacing between energy levels and keep the ground state energy level unchanged. If changing one of two radii (inner or outer radius), the ground state energy level and the energy spacing will change simultaneously. These results are useful for designing and fabricating the double colors detector by intraband and interband translations. The single electron states are useful for studying the electron correlations and the effects of magnetic fields in quantum rings. Our calculated results are consistent with the recent experimental data of nanoscopic semiconductor rings. (C) 2001 American Institute of Physics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deep level transient spectroscopy (DLTS) technique was successfully applied to characterize the electric properties of p type self-organized InAs quantum dots. The ground state energy and capture barrier energy of hole of quantum dots were measured for the first time. The energy of ground state of 2.5ML InAs quantum dots with respect to the valence band of bulk GaAs was obtained being about 0.09eV, and there was a barrier associated to the change of charge state of quantum dots. The capture barrier energy of such dots for hole was about 0.26eV. The work is very meaningful for further understanding the intrinsic properties of quantum dots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ground-state energy functions of even-even and odd-A nuclei are derived from simple parameter-dependent Interacting Boson Model (IBM) and Interacting Boson-Fermion Model (IBFM) Hamiltonians. Exact nuclear shape-phase diagrams in the two-parameter (eta, chi) plane are explicitly described using the energy functions on the basis of the condition of phase equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fixed-node diffusion Monte Carlo computations are used to determine the ground state energy and electron density for jellium spheres with up to N = 106 electrons and background densities corresponding to the electron gas parameter 1 less than or equal to r(s)less than or equal to5.62. We analyze the density and size dependence of the surface energy, and we extrapolate our data to the thermodynamic limit. The results agree well with the predictions of density functional computations using the local density approximation. In the case of N = 20, we extend our computation to higher densities and identify a transition between atomic- and jelliumlike nodal structures occurring at the background density corresponding to r(s)=0.13. In this case the local density approximation is unable to reproduce the changes in the correlation energy due to the discontinuous transition in the ground state nodal structure. We discuss the relevance of our results for nonlocal approximations to density functional theory.