181 resultados para GPU
Resumo:
Zweidimensionale Flüssigkeiten harter Scheiben sind in der Regel einfach zu simulieren, jedoch überraschend schwer theoretisch zu beschreiben. Trotz ihrer hohen Relevanz bleiben die meisten theoretischen Ansätze qualitativ. Hier wird eine Dichtefunktionaltheorie (DFT) vorgestellt, die erstmalig die Struktur solcher Flüssigkeiten bei hohen Dichten korrekt beschreibt und den Ansatz des Gefrierübergangs abbildet.rnEs wird gezeigt, dass der Ansatz der Fundamentalmaßtheorie zu einem solchen Funktional führt. Dabei werden sowohl Dichteverteilungen um ein Testteilchen als auch Zweiteilchen-Korrelationsfunktionen untersucht.rnGrafikkarten bieten sehr hohe Recheneffizienz und ihr Einsatz in der Wissenschaft nimmt stetig zu. In dieser Arbeit werden die Vor- und Nachteile der Grafikkarte für wissenschaftliche Berechnungen erörtert und es wird gezeigt, dass die Berechnung der DFT auf Grafikkarten effizient ausgeführt werden kann. Es wird ein Programm entwickelt, dass dies umsetzt. Dabei wird gezeigt, dass die Ergebnisse einfacher (bekannter) Funktionale mit denen von CPU-Berechnungen übereinstimmen, so dass durch die Nutzung der Grafikkarte keine systematischen Fehler zu erwarten sind.
Resumo:
In vielen Bereichen der industriellen Fertigung, wie zum Beispiel in der Automobilindustrie, wer- den digitale Versuchsmodelle (sog. digital mock-ups) eingesetzt, um die Entwicklung komplexer Maschinen m ̈oglichst gut durch Computersysteme unterstu ̈tzen zu k ̈onnen. Hierbei spielen Be- wegungsplanungsalgorithmen eine wichtige Rolle, um zu gew ̈ahrleisten, dass diese digitalen Pro- totypen auch kollisionsfrei zusammengesetzt werden k ̈onnen. In den letzten Jahrzehnten haben sich hier sampling-basierte Verfahren besonders bew ̈ahrt. Diese erzeugen eine große Anzahl von zuf ̈alligen Lagen fu ̈r das ein-/auszubauende Objekt und verwenden einen Kollisionserken- nungsmechanismus, um die einzelnen Lagen auf Gu ̈ltigkeit zu u ̈berpru ̈fen. Daher spielt die Kollisionserkennung eine wesentliche Rolle beim Design effizienter Bewegungsplanungsalgorith- men. Eine Schwierigkeit fu ̈r diese Klasse von Planern stellen sogenannte “narrow passages” dar, schmale Passagen also, die immer dort auftreten, wo die Bewegungsfreiheit der zu planenden Objekte stark eingeschr ̈ankt ist. An solchen Stellen kann es schwierig sein, eine ausreichende Anzahl von kollisionsfreien Samples zu finden. Es ist dann m ̈oglicherweise n ̈otig, ausgeklu ̈geltere Techniken einzusetzen, um eine gute Performance der Algorithmen zu erreichen.rnDie vorliegende Arbeit gliedert sich in zwei Teile: Im ersten Teil untersuchen wir parallele Kollisionserkennungsalgorithmen. Da wir auf eine Anwendung bei sampling-basierten Bewe- gungsplanern abzielen, w ̈ahlen wir hier eine Problemstellung, bei der wir stets die selben zwei Objekte, aber in einer großen Anzahl von unterschiedlichen Lagen auf Kollision testen. Wir im- plementieren und vergleichen verschiedene Verfahren, die auf Hu ̈llk ̈operhierarchien (BVHs) und hierarchische Grids als Beschleunigungsstrukturen zuru ̈ckgreifen. Alle beschriebenen Verfahren wurden auf mehreren CPU-Kernen parallelisiert. Daru ̈ber hinaus vergleichen wir verschiedene CUDA Kernels zur Durchfu ̈hrung BVH-basierter Kollisionstests auf der GPU. Neben einer un- terschiedlichen Verteilung der Arbeit auf die parallelen GPU Threads untersuchen wir hier die Auswirkung verschiedener Speicherzugriffsmuster auf die Performance der resultierenden Algo- rithmen. Weiter stellen wir eine Reihe von approximativen Kollisionstests vor, die auf den beschriebenen Verfahren basieren. Wenn eine geringere Genauigkeit der Tests tolerierbar ist, kann so eine weitere Verbesserung der Performance erzielt werden.rnIm zweiten Teil der Arbeit beschreiben wir einen von uns entworfenen parallelen, sampling- basierten Bewegungsplaner zur Behandlung hochkomplexer Probleme mit mehreren “narrow passages”. Das Verfahren arbeitet in zwei Phasen. Die grundlegende Idee ist hierbei, in der er- sten Planungsphase konzeptionell kleinere Fehler zuzulassen, um die Planungseffizienz zu erh ̈ohen und den resultierenden Pfad dann in einer zweiten Phase zu reparieren. Der hierzu in Phase I eingesetzte Planer basiert auf sogenannten Expansive Space Trees. Zus ̈atzlich haben wir den Planer mit einer Freidru ̈ckoperation ausgestattet, die es erlaubt, kleinere Kollisionen aufzul ̈osen und so die Effizienz in Bereichen mit eingeschr ̈ankter Bewegungsfreiheit zu erh ̈ohen. Optional erlaubt unsere Implementierung den Einsatz von approximativen Kollisionstests. Dies setzt die Genauigkeit der ersten Planungsphase weiter herab, fu ̈hrt aber auch zu einer weiteren Perfor- mancesteigerung. Die aus Phase I resultierenden Bewegungspfade sind dann unter Umst ̈anden nicht komplett kollisionsfrei. Um diese Pfade zu reparieren, haben wir einen neuartigen Pla- nungsalgorithmus entworfen, der lokal beschr ̈ankt auf eine kleine Umgebung um den bestehenden Pfad einen neuen, kollisionsfreien Bewegungspfad plant.rnWir haben den beschriebenen Algorithmus mit einer Klasse von neuen, schwierigen Metall- Puzzlen getestet, die zum Teil mehrere “narrow passages” aufweisen. Unseres Wissens nach ist eine Sammlung vergleichbar komplexer Benchmarks nicht ̈offentlich zug ̈anglich und wir fan- den auch keine Beschreibung von vergleichbar komplexen Benchmarks in der Motion-Planning Literatur.
Resumo:
Il presente lavoro di tesi, svolto presso i laboratori dell'X-ray Imaging Group del Dipartimento di Fisica e Astronomia dell'Università di Bologna e all'interno del progetto della V Commissione Scientifica Nazionale dell'INFN, COSA (Computing on SoC Architectures), ha come obiettivo il porting e l’analisi di un codice di ricostruzione tomografica su architetture GPU installate su System-On-Chip low-power, al fine di sviluppare un metodo portatile, economico e relativamente veloce. Dall'analisi computazionale sono state sviluppate tre diverse versioni del porting in CUDA C: nella prima ci si è limitati a trasporre la parte più onerosa del calcolo sulla scheda grafica, nella seconda si sfrutta la velocità del calcolo matriciale propria del coprocessore (facendo coincidere ogni pixel con una singola unità di calcolo parallelo), mentre la terza è un miglioramento della precedente versione ottimizzata ulteriormente. La terza versione è quella definitiva scelta perché è la più performante sia dal punto di vista del tempo di ricostruzione della singola slice sia a livello di risparmio energetico. Il porting sviluppato è stato confrontato con altre due parallelizzazioni in OpenMP ed MPI. Si è studiato quindi, sia su cluster HPC, sia su cluster SoC low-power (utilizzando in particolare la scheda quad-core Tegra K1), l’efficienza di ogni paradigma in funzione della velocità di calcolo e dell’energia impiegata. La soluzione da noi proposta prevede la combinazione del porting in OpenMP e di quello in CUDA C. Tre core CPU vengono riservati per l'esecuzione del codice in OpenMP, il quarto per gestire la GPU usando il porting in CUDA C. Questa doppia parallelizzazione ha la massima efficienza in funzione della potenza e dell’energia, mentre il cluster HPC ha la massima efficienza in velocità di calcolo. Il metodo proposto quindi permetterebbe di sfruttare quasi completamente le potenzialità della CPU e GPU con un costo molto contenuto. Una possibile ottimizzazione futura potrebbe prevedere la ricostruzione di due slice contemporaneamente sulla GPU, raddoppiando circa la velocità totale e sfruttando al meglio l’hardware. Questo studio ha dato risultati molto soddisfacenti, infatti, è possibile con solo tre schede TK1 eguagliare e forse a superare, in seguito, la potenza di calcolo di un server tradizionale con il vantaggio aggiunto di avere un sistema portatile, a basso consumo e costo. Questa ricerca si va a porre nell’ambito del computing come uno tra i primi studi effettivi su architetture SoC low-power e sul loro impiego in ambito scientifico, con risultati molto promettenti.
Resumo:
In questa tesi si descrive il lavoro svolto presso l’istituto INFN-CNAF, che consiste nello sviluppo di un’applicazione parallela e del suo utilizzo su di un’architettura a basso consumo, allo scopo di valutare il comportamento della stessa, confrontandolo a quello di architetture ad alta potenza di calcolo. L’architettura a basso consumo utilizzata `e un system on chip mutuato dal mondo mobile e embedded contenente una cpu ARM quad core e una GPU NVIDIA, mentre l’architettura ad alta potenza di calcolo `e un sistema x86 64 con una GPU NVIDIA di classe server. L’applicazione `e stata sviluppata in C++ in due differenti versioni: la prima utilizzando l’estensione OpenMP e la seconda utilizzando l’estensione CUDA. Queste due versioni hanno permesso di valutare il comportamento dell’architettura a basso consumo sotto diversi punti di vista, utilizzando nelle differenti versioni dell’applicazione la CPU o la GPU come unita` principale di elaborazione.
Resumo:
Porting dell'esecuzione dell'algoritmo KinectFusion su piattaforma mobile (Android).
Resumo:
In questo lavoro di tesi sono state impiegate le librerie grafiche OpenGL ES 2 per eseguire calcoli paralleli sulla GPU del Raspberry Pi. Sono stati affrontati e discussi concetti riguanrdati il calcolo parallelo, stream processing, GPGPU e le metriche di valutazione di algoritmi paralleli. Sono inoltre descritte le potenzialita e le limitazioni derivanti dall'impiego di OpenGL per implementare algoritmi paralleli. In particolare si e fatto riferimento all'algoritmo Seam Carving per il restringimento di immagini, realizzando e valutando una implementazione parallela di questo sul Raspberry Pi.
Resumo:
In this thesis, I study skin lesion detection and its applications to skin cancer diagnosis. A skin lesion detection algorithm is proposed. The proposed algorithm is based color information and threshold. For the proposed algorithm, several color spaces are studied and the detection results are compared. Experimental results show that YUV color space can achieve the best performance. Besides, I develop a distance histogram based threshold selection method and the method is proven to be better than other adaptive threshold selection methods for color detection. Besides the detection algorithms, I also investigate GPU speed-up techniques for skin lesion extraction and the results show that GPU has potential applications in speeding-up skin lesion extraction. Based on the skin lesion detection algorithms proposed, I developed a mobile-based skin cancer diagnosis application. In this application, the user with an iPhone installed with the proposed application can use the iPhone as a diagnosis tool to find the potential skin lesions in a persons' skin and compare the skin lesions detected by the iPhone with the skin lesions stored in a database in a remote server.
Resumo:
Many methodologies dealing with prediction or simulation of soft tissue deformations on medical image data require preprocessing of the data in order to produce a different shape representation that complies with standard methodologies, such as mass–spring networks, finite element method s (FEM). On the other hand, methodologies working directly on the image space normally do not take into account mechanical behavior of tissues and tend to lack physics foundations driving soft tissue deformations. This chapter presents a method to simulate soft tissue deformations based on coupled concepts from image analysis and mechanics theory. The proposed methodology is based on a robust stochastic approach that takes into account material properties retrieved directly from the image, concepts from continuum mechanics and FEM. The optimization framework is solved within a hierarchical Markov random field (HMRF) which is implemented on the graphics processor unit (GPU See Graphics processing unit ).
Resumo:
In this paper we present a hybrid technique for correcting distortions that appear when projecting images onto geometrically complex, colored and textured surfaces. It analyzes the optical flow that results from perspective distortions during motions of the observer and tries to use this information for computing the correct image warping. If this fails due to an unreliable optical flow, an accurate -but slower and visiblestructured light projection is automatically triggered. Together with an appropriate radiometric compensation, view-dependent content can be projected onto arbitrary everyday surfaces. An implementation mainly on the GPU ensures fast frame rates.
Resumo:
Efficient image blurring techniques based on the pyramid algorithm can be implemented on modern graphics hardware; thus, image blurring with arbitrary blur width is possible in real time even for large images. However, pyramidal blurring methods do not achieve the image quality provided by convolution filters; in particular, the shape of the corresponding filter kernel varies locally, which potentially results in objectionable rendering artifacts. In this work, a new analysis filter is designed that significantly reduces this variation for a particular pyramidal blurring technique. Moreover, the pyramidal blur algorithm is generalized to allow for a continuous variation of the blur width. Furthermore, an efficient implementation for programmable graphics hardware is presented. The proposed method is named “quasi-convolution pyramidal blurring” since the resulting effect is very close to image blurring based on a convolution filter for many applications.
Resumo:
For broadcasting purposes MIXED REALITY, the combination of real and virtual scene content, has become ubiquitous nowadays. Mixed Reality recording still requires expensive studio setups and is often limited to simple color keying. We present a system for Mixed Reality applications which uses depth keying and provides threedimensional mixing of real and artificial content. It features enhanced realism through automatic shadow computation which we consider a core issue to obtain realism and a convincing visual perception, besides the correct alignment of the two modalities and correct occlusion handling. Furthermore we present a possibility to support placement of virtual content in the scene. Core feature of our system is the incorporation of a TIME-OF-FLIGHT (TOF)-camera device. This device delivers real-time depth images of the environment at a reasonable resolution and quality. This camera is used to build a static environment model and it also allows correct handling of mutual occlusions between real and virtual content, shadow computation and enhanced content planning. The presented system is inexpensive, compact, mobile, flexible and provides convenient calibration procedures. Chroma-keying is replaced by depth-keying which is efficiently performed on the GRAPHICS PROCESSING UNIT (GPU) by the usage of an environment model and the current ToF-camera image. Automatic extraction and tracking of dynamic scene content is herewith performed and this information is used for planning and alignment of virtual content. An additional sustainable feature is that depth maps of the mixed content are available in real-time, which makes the approach suitable for future 3DTV productions. The presented paper gives an overview of the whole system approach including camera calibration, environment model generation, real-time keying and mixing of virtual and real content, shadowing for virtual content and dynamic object tracking for content planning.
Resumo:
Long-term electrocardiogram (ECG) often suffers from relevant noise. Baseline wander in particular is pronounced in ECG recordings using dry or esophageal electrodes, which are dedicated for prolonged registration. While analog high-pass filters introduce phase distortions, reliable offline filtering of the baseline wander implies a computational burden that has to be put in relation to the increase in signal-to-baseline ratio (SBR). Here we present a graphics processor unit (GPU) based parallelization method to speed up offline baseline wander filter algorithms, namely the wavelet, finite, and infinite impulse response, moving mean, and moving median filter. Individual filter parameters were optimized with respect to the SBR increase based on ECGs from the Physionet database superimposed to auto-regressive modeled, real baseline wander. A Monte-Carlo simulation showed that for low input SBR the moving median filter outperforms any other method but negatively affects ECG wave detection. In contrast, the infinite impulse response filter is preferred in case of high input SBR. However, the parallelized wavelet filter is processed 500 and 4 times faster than these two algorithms on the GPU, respectively, and offers superior baseline wander suppression in low SBR situations. Using a signal segment of 64 mega samples that is filtered as entire unit, wavelet filtering of a 7-day high-resolution ECG is computed within less than 3 seconds. Taking the high filtering speed into account, the GPU wavelet filter is the most efficient method to remove baseline wander present in long-term ECGs, with which computational burden can be strongly reduced.
Resumo:
This paper presents a non-rigid free-from 2D-3D registration approach using statistical deformation model (SDM). In our approach the SDM is first constructed from a set of training data using a non-rigid registration algorithm based on b-spline free-form deformation to encode a priori information about the underlying anatomy. A novel intensity-based non-rigid 2D-3D registration algorithm is then presented to iteratively fit the 3D b-spline-based SDM to the 2D X-ray images of an unseen subject, which requires a computationally expensive inversion of the instantiated deformation in each iteration. In this paper, we propose to solve this challenge with a fast B-spline pseudo-inversion algorithm that is implemented on graphics processing unit (GPU). Experiments conducted on C-arm and X-ray images of cadaveric femurs demonstrate the efficacy of the present approach.
Resumo:
We present a novel algorithm to reconstruct high-quality images from sampled pixels and gradients in gradient-domain rendering. Our approach extends screened Poisson reconstruction by adding additional regularization constraints. Our key idea is to exploit local patches in feature images, which contain per-pixels normals, textures, position, etc., to formulate these constraints. We describe a GPU implementation of our approach that runs on the order of seconds on megapixel images. We demonstrate a significant improvement in image quality over screened Poisson reconstruction under the L1 norm. Because we adapt the regularization constraints to the noise level in the input, our algorithm is consistent and converges to the ground truth.
Resumo:
Zernike polynomials are a well known set of functions that find many applications in image or pattern characterization because they allow to construct shape descriptors that are invariant against translations, rotations or scale changes. The concepts behind them can be extended to higher dimension spaces, making them also fit to describe volumetric data. They have been less used than their properties might suggest due to their high computational cost. We present a parallel implementation of 3D Zernike moments analysis, written in C with CUDA extensions, which makes it practical to employ Zernike descriptors in interactive applications, yielding a performance of several frames per second in voxel datasets about 2003 in size. In our contribution, we describe the challenges of implementing 3D Zernike analysis in a general-purpose GPU. These include how to deal with numerical inaccuracies, due to the high precision demands of the algorithm, or how to deal with the high volume of input data so that it does not become a bottleneck for the system.