300 resultados para GLUON


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We analyse the possibility that, in two Higgs doublet models, one or more of the Higgs couplings to fermions or to gauge bosons change sign, relative to the respective Higgs Standard Model couplings. Possible sign changes in the coupling of a neutral scalar to charged ones are also discussed. These wrong signs can have important physical consequences, manifesting themselves in Higgs production via gluon fusion or Higgs decay into two gluons or into two photons. We consider all possible wrong sign scenarios, and also the symmetric limit, in all possible Yukawa implementations of the two Higgs doublet model, in two different possibilities: the observed Higgs boson is the lightest CP-even scalar, or the heaviest one. We also analyse thoroughly the impact of the currently available LHC data on such scenarios. With all 8 TeV data analysed, all wrong sign scenarios are allowed in all Yukawa types, even at the 1 sigma level. However, we will show that B-physics constraints are crucial in excluding the possibility of wrong sign scenarios in the case where tan beta is below 1. We will also discuss the future prospects for probing the wrong sign scenarios at the next LHC run. Finally we will present a scenario where the alignment limit could be excluded due to non-decoupling in the case where the heavy CP-even Higgs is the one discovered at the LHC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The final ATLAS Run 1 measurements of Higgs boson production and couplings in the decay channel H→ZZ∗→ℓ+ℓ−ℓ′+ℓ′−, where ℓ,ℓ′=e or μ, are presented. These measurements were performed using pp collision data corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1 at center-of-mass energies of 7 TeV and 8 TeV, respectively, recorded with the ATLAS detector at the LHC. The H→ZZ∗→4ℓ signal is observed with a significance of 8.1 standard deviations at 125.36 GeV, the combined ATLAS measurement of the Higgs boson mass from the H→γγ and H→ZZ∗→4ℓ channels. The production rate relative to the Standard Model expectation, the signal strength, is measured in four different production categories in the H→ZZ∗→4ℓ channel. The measured signal strength, at this mass, and with all categories combined, is 1.44 +0.40−0.33. The signal strength for Higgs boson production in gluon fusion or in association with tt¯ or bb¯ pairs is found to be 1.7 +0.5−0.4, while the signal strength for vector-boson fusion combined with WH/ZH associated production is found to be 0.3 +1.6−0.9.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report the observation of Higgs boson decays to WW∗ based on an excess over background of 6.1 standard deviations in the dilepton final state, where the Standard Model expectation is 5.8 standard deviations. Evidence for the vector-boson fusion (VBF) production process is obtained with a significance of 3.2 standard deviations. The results are obtained from a data sample corresponding to an integrated luminosity of 25 pb−1 from s√=7 and 8 TeV pp collisions recorded by the ATLAS detector at the LHC. For a Higgs boson mass of 125.36 GeV, the ratio of the measured value to the expected value of the total production cross section times branching fraction is 1.09+0.16−0.15 (stat.)+0.17−0.14 (syst.). The corresponding ratios for the gluon fusion and vector-boson fusion production mechanisms are 1.02±0.19 (stat.)+0.22−0.18 (syst.) and 1.27+0.44−0.40 (stat.)+0.30−0.21 (syst.), respectively. At s√=8 TeV, the total production cross sections are measured to be σ(gg→ H→WW∗)=4.6±0.9(stat.)+0.8−0.7(syst.)pb and σ(VBF H→WW∗)=0.51+0.17−0.15(stat.)+0.13−0.08(syst.)pb. The fiducial cross section is determined for the gluon-fusion process in exclusive final states with zero or one associated jet.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The normalized differential cross section for top-quark pair production in association with at least one jet is studied as a function of the inverse of the invariant mass of the tt¯+1-jet system. This distribution can be used for a precise determination of the top-quark mass since gluon radiation depends on the mass of the quarks. The experimental analysis is based on proton--proton collision data collected by the ATLAS detector at the LHC with a centre-of-mass energy of 7 TeV corresponding to an integrated luminosity of 4.6 fb−1. The selected events were identified using the lepton+jets top-quark-pair decay channel, where lepton refers to either an electron or a muon. The observed distribution is compared to a theoretical prediction at next-to-leading-order accuracy in quantum chromodynamics using the pole-mass scheme. With this method, the measured value of the top-quark pole mass, mpolet, is: mpolet =173.7 ± 1.5 (stat.) ± 1.4 (syst.) +1.0−0.5 (theory) GeV. This result represents the most precise measurement of the top-quark pole mass to date.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for new particles that decay into top quark pairs is reported. The search is performed with the ATLAS experiment at the LHC using an integrated luminosity of 20.3 fb−1 of proton-proton collision data collected at a centre-of-mass energy of s√=8 TeV. The lepton-plus-jets final state is used, where the top pair decays to W+bW−b¯¯, with one W boson decaying leptonically and the other hadronically. The invariant mass spectrum of top quark pairs is examined for local excesses or deficits that are inconsistent with the Standard Model predictions. No evidence for a top quark pair resonance is found, and 95% confidence-level limits on the production rate are determined for massive states in benchmark models. The upper limits on the cross-section times branching ratio of a narrow Z′ boson decaying to top pairs range from 4.2 pb to 0.03 pb for resonance masses from 0.4 TeV to 3.0 TeV. A narrow leptophobic topcolour Z′ boson with mass below 1.8 TeV is excluded. Upper limits are set on the cross-section times branching ratio for a broad colour-octet resonance with Γ/m = 15% decaying to tt¯. These range from 4.8 pb to 0.03 pb for masses from 0.4 TeV to 3.0 TeV. A Kaluza-Klein excitation of the gluon in a Randall-Sundrum model is excluded for masses below 2.2 TeV.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A search for Higgs boson production in association with a W or Z boson, in the H→ W W ∗ decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies s√=7 TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb−1 and 20.3 fb−1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μ V H , is found to be μ V H  = 3.0 − 1.1 + 1.3 (stat.) − 0.7 + 1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W ∗ → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μ ggF + VBF + VH = 1. 16 − 0.15 + 0.16 (stat.) − 0.15 + 0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (κ V ) and fermions (κ F ); the combined results are: |κ V | = 1.06 − 0.10 + 0.10 , |κ F | = 0. 85 − 0.20 + 0.26 .

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A model for energy, pressure, and flow velocity distributions at the beginning of ultrarelativistic heavy ion collisions is presented, which can be used as an initial condition for hydrodynamic calculations. Our model takes into account baryon recoil for both target and projectile, arising from the acceleration of partons in an effective field F mu nu produced in the collision. The typical field strength (string tension) for RHIC energies is about 512 GeV/fm, which allows us to talk about string ropes. The results show that a quark-gluon plasma forms a tilted disk, such that the direction of the largest pressure gradient stays in the reaction plane, but deviates from both the beam and the usual transverse flow directions. Such initial conditions may lead to the creation of antiflow or third flow component [L. P. Csernai and D. Rhrich, Phys. Rev. Lett. B 458, 454 (1999)].

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To cosmic rays incident near the horizon the Earth's atmosphere represents a beam dump with a slant depth reaching 36 000 g cm-2 at 90. The prompt decay of a heavy quark produced by very high energy cosmic ray showers will leave an unmistakable signature in this dump. We translate the failure of experiments to detect such a signal into an upper limit on the heavy quark hadroproduction cross section in the energy region beyond existing accelerators. Our results disfavor any rapid growth of the cross section or the gluon structure function beyond conservative estimates based on perturbative QCD.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Classical transport theory is employed to analyze the hot quark-gluon plasma at the leading order in the coupling constant. A condition on the (covariantly conserved) color current is obtained. From this condition, the generating functional of hard thermal loops with an arbitrary number of soft external bosonic legs can be derived. Our approach, besides being more direct than alternative ones, shows that hard thermal loops are essentially classical.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We illustrate how to apply modern effective field-theory techniques and dimensional regularization to factorize the various scales, which appear in QED bound states at finite temperature. We focus here on the muonic hydrogen atom. Vacuum polarization effects make the physics of this atom at finite temperature very close to that of heavy quarkonium states. We comment on the implications of our results for these states in the quark gluon plasma. In particular, we estimate the effects of a finite-charm quark mass in the dissociation temperature of bottomonium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new "symmetrized" v1S(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently showed that a heavy quark moving su ciently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N = 4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1=Nc) effect, a ballpark estimate yields a value of dE/dx for Nc = 3 which is comparable to that of other mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We recently showed that a heavy quark moving su ciently fast through a quark-gluon plasma may lose energy by Cherenkov-radiating mesons [1]. Here we review our previous holographic calculation of the energy loss in N = 4 Super Yang-Mills and extend it to longitudinal vector mesons and scalar mesons. We also discuss phenomenological implications for heavy-ion collision experiments. Although the Cherenkov energy loss is an O(1=Nc) effect, a ballpark estimate yields a value of dE/dx for Nc = 3 which is comparable to that of other mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Substantial collective flow is observed in collisions between lead nuclei at Large Hadron Collider (LHC) as evidenced by the azimuthal correlations in the transverse momentum distributions of the produced particles. Our calculations indicate that the global v1-flow, which at RHIC peaked at negative rapidities (named third flow component or antiflow), now at LHC is going to turn toward forward rapidities (to the same side and direction as the projectile residue). Potentially this can provide a sensitive barometer to estimate the pressure and transport properties of the quark-gluon plasma. Our calculations also take into account the initial state center-of-mass rapidity fluctuations, and demonstrate that these are crucial for v1 simulations. In order to better study the transverse momentum flow dependence we suggest a new"symmetrized" vS1(pt) function, and we also propose a new method to disentangle global v1 flow from the contribution generated by the random fluctuations in the initial state. This will enhance the possibilities of studying the collective Global v1 flow both at the STAR Beam Energy Scan program and at LHC.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We study large N SU(N) Yang-Mills theory in three and four dimensions using a one-parameter family of supergravity models which originate from non-extremal rotating D-branes. We show explicitly that varying this angular momentum parameter decouples the Kaluza-Klein modes associated with the compact D-brane coordinate, while the mass ratios for ordinary glueballs are quite stable against this variation, and are in good agreement with the latest lattice results. We also compute the topological susceptibility and the gluon condensate as a function of the "angular momentum" parameter.