932 resultados para GINGIVAL INFLAMMATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the effects of oral tolerance (OT) in controlling inflammatory response, hyperresponsiveness and airway remodeling in guinea pigs (GP) with chronic allergic inflammation. Animals received seven inhalations of ovalbumin (1-5 mg/mL-OVA group) or normal saline (NS group). OT was induced by offering ad libitum ovalbumin 2% in sterile drinking water starting with the 1st ovalbumin inhalation (OT1 group) or after the 4th (OT2 group). The induction of OT in sensitized animals decreased the elastance of respiratory system (Ers) response after both antigen and methacholine challenges, peribronchial edema formation, eosinophilic airway infiltration, eosinophilopoiesis, and airways collagen and elastic fiber content compared to OVA group (P < 0.05). The number of mononuclear cells and resistance of respiratory system (Rrs) responses after antigen and methacholine challenges were decreased only in OT2 group compared to OVA group (P < 0.05). Concluding, our results show that inducing OT attenuates airway remodeling as well as eosinophilic inflammation and respiratory system mechanics. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

transition metals, which are involved in the pathological effects of PM. The objective of this study was to investigate the effects of intranasal administration of ROFA on pulmonary inflammation, pulmonary responsiveness, and excess mucus production in a mouse model of chronic pulmonary allergic inflammation. BALB/c mice received intraperitoneal injections of ovalbumin (OVA) solution (days 1 and 14). OVA challenges were performed on days 22, 24, 26, and 28. After the challenge, mice were intranasally instilled with ROFA. After forty-eight hours, pulmonary responsiveness was performed. Mice were sacrificed, and lungs were removed for morphometric analysis. OVA-exposed mice presented eosinophilia in the bronchovascular space (p < .001), increased pulmonary responsiveness (p < .001), and epithelial remodeling (p = .003). ROFA instillation increased pulmonary responsiveness (p = .004) and decreased the area of ciliated cells in the airway epithelium (p = .006). The combined ROFA instillation and OVA exposure induced a further increase in values of pulmonary responsiveness (p = .043) and a decrease in the number of ciliated cells in the airway epithelium (p = .017). PM exposure results in pulmonary effects that are more intense in mice with chronic allergic pulmonary inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated the effect of pcDNA3-CpG and pcDNA-IL-12, delivered by intradermal gene gun administration, on the blood/lung eosinophilia, airway hyperresponsiveness as well as the immune response in a murine model of toxocariasis. Our results demonstrated that pcDNA-IL-12 but not pcDNA3-CpG vaccination Led to a persistent tower blood/bronchoalveolar eosinophilia following Toxocaro conis infection, as pcDNA3-CpG led only to an early transient blockage of eosinophil transmigration into bronchoalveolar fluid following T canis infection. Prominent Type-1 immune response was pointed out as the halt-mark of T canis infection following pcDNA-IL-12 vaccination. Outstanding IFN-gamma/IL-4 ratio besides tow levels of IgG1 with subsequent high IgG2a/IgG1 ratio further characterized a Type-1 polarized immunological profile in pcDNA-IL-12-vaccinated animals. Nevertheless, only pcDNA3-CpG was able to prevent airway hyperresponsiveness induced by T canis infection. The persistent airway hyperresponsiveness observed in pcDNA-IL-12-vaccinated animals demonstrated that the airway constriction involved other immunological mediator than those blocked by pcDNA-IL-12. Together, these data indicated that pcDNA-IL-12 and pcDNA3-CpG vaccines have distinct therapeutic benefits regarding the eosinophilic inflammation/airway hyperresponsiveness triggered by T canis infection, suggesting their possible use in further combined therapeutic interventions. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tick saliva contains molecules that are inoculated at the site of attachment on their hosts in order to modulate local immune responses and facilitate a successful blood meal. Bovines express heritable, contrasting phenotypes of infestations with the cattle tick, Rhipicephalus (Boophilus) microplus: breeds of Bos taurus indicus are significantly note resistant than those of Bos taurus taurus. Tick saliva may contain molecules that interfere with adhesion of leukocytes to endothelium and resistant hosts may mount an inflammatory profile that is more efficient to hamper the tick`s blood meal. We show in vitro that adhesion of peripheral blood mononuclear cells to monolayers of cytokine-activated bovine umbilical endothelial cells was significantly inhibited by tick saliva. The inflammatory response to bites of adults of R. microplus mounted by genetically resistant and susceptible bovine hosts managed in the same pasture was investigated in vivo. The inflammatory infiltrates and levels of message coding for adhesion molecules were measured in biopsies of tick-bitten and control skin taken when animals of both breeds were exposed to low and high tick infestations. Histological studies reveal that cutaneous reactions of resistant hosts to bites of adult ticks contained significantly more basophils and eosinophils compared with reactions of the susceptible breed. Expression of the adhesion molecules - intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin - was higher in adult-infested skin of susceptible hosts undergoing low infestations compared to resistant hosts; when host was exposed to high infestations expression of these adhesion molecules was down-regulated in both phenotypes of infestations. Expression of leukocyte adhesion glycoprotein-1 (LFA-1) was higher in skin from susceptible hosts undergoing low or high infestations compared to resistant hosts. Conversely, higher levels of E-selectin, which promotes adhesion of memory T cells, were expressed in skin of resistant animals. This finding may explain the resistant host`s ability to mount more rapid and efficient secondary responses that limit hematophagy and infestations. The expression profiles observed for adhesion molecules indicate that there are differences in the kinetics of the inflammatory reactions mounted by resistant and susceptible hosts and the balance between tick and host is affected by the number of tick bites a host receives. We show that the contrasting phenotypes of infestations seen in bovines infested with R. microplus are correlated with differences in the cellular and molecular composition of inflammatory infiltrates elicited by bites with adult ticks. (C) 2009 Published by Elsevier B.V.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: A DNA vaccine (pVAXhsp65) containing the gene of a heat-shock protein (hsp65) from Mycobacterium leprae showed high immunogenicity and protective efficacy against tuberculosis in BALB/c mice. A possible deleterious effect related to autoimmunity needed to be tested because hsp65 is highly homologous to the correspondent mammalian protein. In this investigation we tested the effect of a previous immunization with DNAhsp65 in the development of experimental autoimmune encephalomyelitis (EAE), a rat model of multiple sclerosis. Methods: Female Lewis rats were immunized with 3 pVAXhsp65 doses by intramuscular route. Fifteen days after the last DNA dose the animals were evaluated for specific immunity or submitted to induction of EAE. Animals were evaluated daily for weight loss and clinical score, and euthanized during the recovery phase to assess the immune response and inflammatory infiltration at the central nervous system. Results: Immunization with pVAXhsp65 induced a specific immune response characterized by production of IgG(2b) anti-hsp65 antibodies and IFN-gamma secretion. Previous immunization with pVAXhsp65 did not change EAE clinical manifestations (weight and clinical score). However, the vaccine clearly decreased brain and lumbar spinal cord inflammation. In addition, it downmodulated IFN-gamma and IL-10 production by peripheral lymphoid organs. Conclusion: Our data demonstrated that this vaccine does not trigger a deleterious effect on EAE development and also points to a potential protective effect. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Periodontitis, a complication of diabetes mellitus (DM), can induce or perpetuate systemic conditions. This double-masked, placebo-controlled study evaluated the effects of periodontal therapy (scaling and root planing [SRP]) on the serum levels of glycated hemoglobin (HbA1c) and on inflammatory biomarkers. Methods: Thirty subjects with type 2 DM and periodontitis were treated with SRP + placebo (SRP; N = 15) or with SRP + doxycycline (SRP+Doxy; N = 15), 100 mg/day, for 14 days. Clinical and laboratory data were recorded at baseline and at 3 months after treatment. Results: After 3 months, the reduction in probing depth Was 0.8 mm for the SRP group (P <0.01) and 1.1 mm for the SRP+Doxy group (P <0.01) followed by a 0.9% (SRP; P = 0.17) and 1.5% (SRP+Doxy; P<0.01) reduction in HbA1c levels. A significant reduction in interleukin (IL)-6; interferon-inducible protein 10; soluble fas ligand; granulocyte colony-stimulating factor; RANTES; and IL-12 p70 serum levels were also verified (N = 30). To our knowledge, this is the first report on the effects of periodontal therapy on multiple systemic inflammatory markers in DM. Conclusions: Periodontal therapy may influence the systemic conditions of patients with type 2 DM, but no statistical difference was observed with the adjunctive systemic doxycycline therapy. Moreover, it is possible that the observed improvement in glycemic control and in the reduction of inflammatory markers could also be due to diet, which was not controlled in our study. Therefore, a confirmatory study with a larger sample size and controlled diet is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

IL-23/IL-17-induced neutrophil recruitment plays a pivotal role in rheumatoid arthritis (RA). However, the mechanism of the neutrophil recruitment is obscure. Here we report that prostaglandin enhances the IL-23/IL-17-induced neutrophil migration in a murine model of RA by inhibiting IL-12 and IFN gamma production. Methylated BSA (mBSA) and IL-23-induced neutrophil migration was inhibited by anti-IL-23 and anti-IL-17 antibodies, COX inhibitors, IL-12, or IFN gamma but was enhanced by prostaglandin E(2) (PGE(2)). IL-23-induced IL-17 production was increased by PGE(2) and suppressed by COX-inhibition or IL-12. Furthermore, COX inhibition failed to reduce IL-23-induced neutrophil migration in IL-12- or IFN gamma-deficient mice. IL-17-induced neutrophil migration was not affected by COX inhibitors, IL-12, or IFN gamma but was inhibited by MK886 (a leukotriene synthesis inhibitor), anti-TNF alpha, anti-CXCL1, and anti-CXCL5 antibodies and by repertaxin (a CXCR1/2 antagonist). These treatments all inhibited mBSA- or IL-23-induced neutrophil migration. IL-17 induced neutrophil chemotaxis through a CXC chemokines-dependent pathway. Our results suggest that prostaglandin plays an important role in IL-23-induced neutrophil migration in arthritis by enhancing IL-17 synthesis and by inhibiting IL-12 and IFN gamma production. We thus provide a mechanism for the pathogenic role of the IL-23/IL-17 axis in RA and also suggest an additional mechanism of action for nonsteroidal anti-inflammatory drugs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cardoso CR, Provinciatto PR, Godoi DF, Ferreira BR, Teixeira G, Rossi MA, Cunha FQ, Silva JS. IL-4 regulates susceptibility to intestinal inflammation in murine food allergy. Am J Physiol Gastrointest Liver Physiol 296: G593-G600, 2009. First published January 8, 2009; doi:10.1152/ajpgi.90431.2008.-Allergies involve a state of immediate hypersensitivity to antigens, including food proteins. The mechanism underlying the initiation and development of allergic responses involves IL-4 that directly induces the differentiation of committed effector Th2 lymphocytes. Although it is clear that Th2 responses play a pivotal role in the development of allergic responses, it remains unclear which mechanisms are involved in the development of the intestinal damages observed in food allergy. Accordingly, this work aimed to study the role of Th2/IL-4-dependent responses in the development of food allergy and intestinal pathology. C57BL/6 wild-type (WT) and IL-4(-/-) mice were sensitized with peanut proteins, challenged with peanut seeds, and followed for the development of food allergy and intestinal inflammation. Results demonstrated that exposure to peanut seeds led to weight loss in WT but not in IL-4(-/-) mice that preserved gut integrity with no signs of mucosal inflammation. These animals presented increased levels of IgG2a in sera, suggesting a role for allergic antibodies in the pathogenesis of WT animals. Most importantly, results also showed that lack of IL-4 modulated gut mucosal response in food allergy through diminished expression of TNF-alpha mRNA, increased Th1 IFN-gamma, IL-12p40, regulatory cytokines, and Foxp3, demonstrating their relevance in the control of allergic inflammatory processes, especially in the intestine. Finally, this study highlighted some of the complex mechanisms involved in the pathogenesis of allergic responses to food antigens in the gut, thereby providing valuable tools for directing novel therapeutic or preventive strategies to the control of allergic enteropathy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cannabidiol (CBD) is a cannabinoid component from Cannabis sativa that does not induce psychotomimetic effects and possess anti-inflammatory properties. In the present study we tested the effects of CBD in a periodontitis experimental model in rats. We also investigated possible mechanisms underlying these effects. Periodontal disease was induced by a ligature placed around the mandible first molars of each animal. Male Wistar rats were divided into 3 groups: control animals; ligature-induced animals treated with vehicle and ligature-induced animals treated with CBD (5 mg/kg, daily). Thirty days after the induction of periodontal disease the animals were sacrificed and mandibles and gingival tissues removed for further analysis. Morphometrical analysis of alveolar bone loss demonstrated that CBD-treated animals presented a decreased alveolar bone loss and a lower expression of the activator of nuclear factor-kappa B ligand RANKL/RANK. Moreover, gingival tissues from the CBD-treated group showed decreased neutrophil migration (MPO assay) associated with lower interleukin (IL)-1 beta and tumor necrosis factor (TNF)-alpha production. These results indicate that CBD may be useful to control bone resorption during progression of experimental periodontitis in rats. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Type 17 helper T (Th17) cells are implicated in the pathogenesis many of human autoimmune diseases. Development of Th17 can be enhanced by the activation of aryl hydrocarbon receptor (AHR) whose ligands include the environmental pollutant dioxin, potentially linking environmental factors to the increased prevalence of autoimmune disease. We report here that nitric oxide (NO) can suppress the proliferation and function of polarized murine and human Th17 cells. NO also inhibits AHR expression in Th17 cells and the downstream events of AHR activation, including IL-22, IL-23 receptor, and Cyp1a1. Conversely, NO did not affect the polarization of Th17 cells from mice deficient in AHR. Furthermore, mice lacking inducible nitric oxide synthase (Nos2(-/-)) developed more severe experimental autoimmune encephalomyelitis than WT mice, with elevated AHR expression, increased IL-17A, and IL-22 synthesis. NO may therefore represent an important endogenous regulator to prevent overexpansion of Th17 cells and control of autoimmune diseases caused by environmental pollutants.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Subcutaneous heat-coagulated egg white implants (EWI) induce chronic, intense local eosinophilia in mice, followed by asthma-like responses to airway ovalbumin challenge. Our goal was to define the mechanisms of selective eosinophil accumulation in the EWI model. EWI carriers were challenged i.p. with ovalbumin and the contributions of cellular immunity and inflammatory mediators to the resulting leukocyte accumulation were defined through cell transfer and pharmacological inhibition protocols. Eosinophil recruitment required Major Histocompatibility Complex Class It expression, and was abolished by the leukotriene B4 (LTB4) receptor antagonist CP 105.696, the 5-lipoxygenase inhibitor BWA4C and the 5-lipoxygenase activating protein inhibitor MK886. Eosinophil recruitment in EWI carriers followed transfer of: a) CD4(+) (but not CD4(-)) cells, harvested from EWI donors and restimulated ex vivo; b) their cell-free supernatants, containing LTB4. Restimulation in the presence of MK886 was ineffective. CC chemokine receptor ligand (CCL)5 and CCL2 were induced by ovalbumin challenge in vivo. mRNA for CCL17 and CCL11 was induced in ovalbumin-restimulated CD4(+) cells ex vivo. MK886 blocked induction of CCL17 Pretreatment of EWI carriers with MK886 eliminated the effectiveness of exogenously administered CCL11, CCL2 and CCL5. In conclusion, chemokine-producing, ovalburnin-restimulated CD4(+) cells initiate eosinophil recruitment which is strictly dependent on LTB4 production. (C) 2008 Elsevier Inc. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the present study, we investigated whether saliva from Phlebotomus papatasi and Phlebotomus duboscqi inhibited antigen-induced neutrophil migration and the mechanisms involved in these effects. The pretreatment of immunized mice with salivary gland extracts (SGE) of both phlebotomines inhibited OVA challenge-induced neutrophil migration and release of the neutrophil chemotactic mediators, MIP-1 alpha, TNF-alpha, and leukotriene B-4 (LTB4). Furthermore, SGE treatment enhanced the production of anti-inflammatory mediators, IL-10 and PGE(2). SGE treatments failed to inhibit neutrophil migration and MIP-1 alpha and LTB4 production in IL-10(-/-) mice, also failing in mice treated with nonselective (indomethacin) or selective (rofecoxibe) cyclooxygenase (COX) inhibitors. COX inhibition resulted in diminished SGE-induced IL-10 production, and PGE(2) release triggered by SGE remained increased in IL-10(-/-) mice, suggesting that prostanoids are acting through an IL-10-dependent mechanism. SGE treatments in vivo reduced the OVA-induced lymphoproliferation of spleen-derived cells. Further, the in vitro incubation of bone marrow-derived dendritic cells (DC) with SGE inhibited the proliferation of CD4(+) T cells from OVA-immunized mice, which was reversed by indomethacin and anti-IL-10 antibody treatments. Supporting these results, SGE induced the production of PGE(2) and IL-10 by DC, which were blocked by COX inhibition. These effects were associated with the reduction of DC-membrane expression of MHC-II and CD86 by SGE treatment. Altogether, the results showed that Phlebotomine saliva inhibits immune inflammation-induced neutrophil migration by an autocrine DC sequential production of PGE(2)/IL-10, suggesting that the saliva constituents might be promising therapeutic molecules to target immune inflammatory diseases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inflammation is a pivotal component of a variety of diseases, such as atherosclerosis and tumour progression. Various naturally occurring phytochemicals exhibit anti-inflammatory activity and are considered to be potential drug candidates against inflammation-related pathological processes. Capsicum baccatum L. var. pendulum (Willd.) Eshbaugh (Solanaceae) is the most consumed species in Brazil, and its compounds, such as capsaicinoids, have been found to inhibit the inflammatory process. However, the anti-inflammatory effects of C. baccatum have not been characterized. Thus, this study was designed to evaluate the effects of C. baccatum juice in animal models of acute inflammation induced by carrageenan and immune inflammation induced by methylated bovine serum albumin. Pretreatment (30 min) of rats with pepper juice (0.25-2.0 g kg(-1)) significantly decreased leucocyte and neutrophil migration, exudate volume and protein and LDH concentration in pleural exudates of a pleurisy model. This juice also inhibited neutrophil migration and reduced the vascular permeability on carrageenan-induced peritonitis in mice. C. baccatum juice also reduced neutrophil recruitment and exudate levels of pro-inflammatory cytokines TNF-alpha, and IL-1 beta in mouse inflammatory immune peritonitis. Furthermore, we demonstrated that the main constituent of C. baccatum juice, as extracted with chloroform, is capsaicin. In agreement with this, capsaicin was able to inhibit the neutrophil migration towards the inflammatory focus. To our knowledge, this is the first demonstration of the anti-inflammatory effect of C. baccatum juice and our data suggest that this effect may be induced by capsaicin. Moreover, the anti-inflammatory effect induced by red pepper may be by inhibition of pro-inflammatory cytokine production at the inflammatory site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background Hypersensitivity or uncontrolled responses against dietary antigens can lead to inflammatory disorders like food allergy and current models reflect a variety of causes but do not reveal the detailed modulation of gut immunity in response to food antigens after breakdown in mucosal tolerance. Objective To develop and characterize a murine model for food-induced intestinal inflammation and to demonstrate the modulation of gut immune response by dietary allergenic antigens. Methods C57BL/6 mice were sensitized with peanut proteins, challenged with peanut seeds and their sera and gut segments were collected for subsequent analyses. Results Sensitization and challenged with peanut seeds led to alterations in gut architecture with inflammatory response characterized by oedema in lamina propria and cell infiltrate composed mainly by eosinophils, mast cells, phagocytes, natural killer and plasma cells, together with low percentage of gamma delta(+) and CD4(+)CD25(+)Foxp3(+) cells in Peyer`s patches. These animals also presented high levels of specific IgE and IgG1 in sera and modulation of mucosal immunity was mediated by increased expression of GATA-3, IL-4, IL-13 and TNF-alpha in contrast to low IFN-gamma in the gut. Conclusion A murine model for food-induced intestinal inflammation was characterized in which modulation of gut immunity occurs by peanut antigens in consequence of T-helper type 2 (Th2) allergic response and failure of regulatory mechanisms necessary for mucosa homeostasis, resembling food allergy. This work shed some light on the understanding of the pathogenesis of gastrointestinal disorders and intolerance in the gut and supports the development of therapies for food-related enteropathies like food allergy, focusing on gut-specific immune response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hematopoietic SCT (HSCT) and high-dose chemotherapy are being explored as therapy for various human refractory immune-mediated conditions, including inflammatory bowel diseases (IBD). Nevertheless, the exact immunological mechanisms by which the BM cells (BMCs) or immunosuppression provide remission from these diseases is not yet clear. In this work, we investigated the role of these therapies in the modulation of gut mucosal inflammation in an experimental model of IBD. Colitis was induced in mice by 2,4,6-trinitrobenzenesulfonic acid and after CY was administered (200 mg/kg) alone (CY group) or followed by BMCs infusion (HSCT group). Animals were followed for 60 days. Both HSCT and CY reduced the histopathological features of colitis significantly. Infused cells were localized in the gut, and a marked decrease of CD4(+) leukocytes in the inflammatory infiltrate on days +7 and +14 and of CD8(+) cells on day +7 was found in both treatments allied to impressive reduction of proinflammatory Th1 and Th17 cytokines. Although chemotherapy alone was the best treatment regarding the induction of immunosuppressive molecules, only HSCT resulted in increased survival rates compared with the control group. Our findings indicate that high-dose CY followed by HSCT is effective in the modulation of mucosal immunity and in accelerating immune reconstitution after BMT, thus providing valuable tools to support the development and understanding of novel therapeutic strategies for IBD. Bone Marrow Transplantation (2010) 45, 1562-1571; doi:10.1038/bmt.2010.6; published online 15 March 2010