972 resultados para GENETIC-ANALYSIS
Resumo:
Dyslexia is one of the most common childhood disorders with a prevalence of around 5-10% in school-age children. Although an important genetic component is known to have a role in the aetiology of dyslexia, we are far from understanding the molecular mechanisms leading to the disorder. Several candidate genes have been implicated in dyslexia, including DYX1C1, DCDC2, KIAA0319, and the MRPL19/C2ORF3 locus, each with reports of both positive and no replications. We generated a European cross-linguistic sample of school-age children-the NeuroDys cohort-that includes more than 900 individuals with dyslexia, sampled with homogenous inclusion criteria across eight European countries, and a comparable number of controls. Here, we describe association analysis of the dyslexia candidate genes/locus in the NeuroDys cohort. We performed both case-control and quantitative association analyses of single markers and haplotypes previously reported to be dyslexia-associated. Although we observed association signals in samples from single countries, we did not find any marker or haplotype that was significantly associated with either case-control status or quantitative measurements of word-reading or spelling in the meta-analysis of all eight countries combined. Like in other neurocognitive disorders, our findings underline the need for larger sample sizes to validate possibly weak genetic effects. © 2014 Macmillan Publishers Limited All rights reserved.
Resumo:
Mitotic genome instability can occur during the repair of double-strand breaks (DSBs) in DNA, which arise from endogenous and exogenous sources. Studying the mechanisms of DNA repair in the budding yeast, Saccharomyces cerevisiae has shown that Homologous Recombination (HR) is a vital repair mechanism for DSBs. HR can result in a crossover event, in which the broken molecule reciprocally exchanges information with a homologous repair template. The current model of double-strand break repair (DSBR) also allows for a tract of information to non-reciprocally transfer from the template molecule to the broken molecule. These “gene conversion” events can vary in size and can occur in conjunction with a crossover event or in isolation. The frequency and size of gene conversions in isolation and gene conversions associated with crossing over has been a source of debate due to the variation in systems used to detect gene conversions and the context in which the gene conversions are measured.
In Chapter 2, I use an unbiased system that measures the frequency and size of gene conversion events, as well as the association of gene conversion events with crossing over between homologs in diploid yeast. We show mitotic gene conversions occur at a rate of 1.3x10-6 per cell division, are either large (median 54.0kb) or small (median 6.4kb), and are associated with crossing over 43% of the time.
DSBs can arise from endogenous cellular processes such as replication and transcription. Two important RNA/DNA hybrids are involved in replication and transcription: R-loops, which form when an RNA transcript base pairs with the DNA template and displaces the non-template DNA strand, and ribonucleotides embedded into DNA (rNMPs), which arise when replicative polymerase errors insert ribonucleotide instead of deoxyribonucleotide triphosphates. RNaseH1 (encoded by RNH1) and RNaseH2 (whose catalytic subunit is encoded by RNH201) both recognize and degrade the RNA in within R-loops while RNaseH2 alone recognizes, nicks, and initiates removal of rNMPs embedded into DNA. Due to their redundant abilities to act on RNA:DNA hybrids, aberrant removal of rNMPs from DNA has been thought to lead to genome instability in an rnh201Δ background.
In Chapter 3, I characterize (1) non-selective genome-wide homologous recombination events and (2) crossing over on chromosome IV in mutants defective in RNaseH1, RNaseH2, or RNaseH1 and RNaseH2. Using a mutant DNA polymerase that incorporates 4-fold fewer rNMPs than wild type, I demonstrate that the primary recombinogenic lesion in the RNaseH2-defective genome is not rNMPs, but rather R-loops. This work suggests different in-vivo roles for RNaseH1 and RNaseH2 in resolving R-loops in yeast and is consistent with R-loops, not rNMPs, being the the likely source of pathology in Aicardi-Goutières Syndrome patients defective in RNaseH2.
Resumo:
The genomes of many strains of baker’s yeast, Saccharomyces cerevisiae, contain multiple repeats of the copper-binding protein Cup1. Cup1 is a member of the metallothionein family, and is found in a tandem array on chromosome VIII. In this thesis, I describe studies that characterized these tandem arrays and their mechanism of formation across diverse strains of yeast. I show that CUP1 arrays are an illuminating model system for observing recombination in eukaryotes, and describe insights derived from these observations.
In our first study, we analyzed 101 natural isolates of S. cerevisiae in order to examine the diversity of CUP1-containing repeats across different strains. We identified five distinct classes of repeats that contain CUP1. We also showed that some strains have only a single copy of CUP1. By comparing the sequences of all the strains, we were able to elucidate the mechanism of formation of the CUP1 tandem arrays, which involved unequal non-homologous recombination events starting from a strain that had only a single CUP1 gene. Our observation of CUP1 repeat formation allows more general insights about the formation of tandem repeats from single-copy genes in eukaryotes, which is one of the most important mechanisms by which organisms evolve.
In our second study, we delved deeper into our mechanistic investigations by measuring the relative rates of inter-homolog and intra-/inter-sister chromatid recombination in CUP1 tandem arrays. We used a diploid strain that is heterozygous both for insertion of a selectable marker (URA3) inside the tandem array, and also for markers at either end of the array. The intra-/inter-sister chromatid recombination rate turned out to be more than ten-fold greater than the inter-homolog rate. Moreover, we found that loss of the proteins Rad51 and Rad52, which are required for most inter-homolog recombination, did not greatly reduce recombination in the CUP1 tandem repeats. Additionally, we investigated the effects of elevated copper levels on the rate of each type of recombination at the CUP1 locus. Both types of recombination are increased at high concentrations of copper (as is known to be the case for CUP1 transcription). Furthermore, the inter-homolog recombination rate at the CUP1 locus is higher than the average over the genome during mitosis, but is lower than the average during meiosis.
The research described in Chapter 2 is published in 2014.
Resumo:
Resumo:
International audience
Resumo:
Les théories poétiques de l’inscape et du sprung rhythm établies par le poète britannique Gerard Manley Hopkins (1844-1889) ont dérouté les critiques des années durant. La plupart d’entre eux se sont appuyés sur les poèmes publiés en quête d’indices quant à la signification de ses théories. Cette thèse approfondit l’analyse mise de l’avant en révélant que la genèse de la théorie de l’inscape provient des notes de Hopkins — alors étudiant de premier cycle — sur le philosophe présocratique Parménide, et est influencée par les commentaires sur l’oeuvre De la nature du philosophe. Un examen des lettres de Hopkins à ses collègues poètes Robert Bridges et Richard Watson Dixon révèle que le sprung rhythm découle de l’inscape, sa théorie de base. La technique du sprung rhythm consiste donc en l’application de l’inscape au schéma métrique de la poésie. Cette étude établit d’abord une définition opérationnelle de chacune de ces théories pour ensuite les appliquer aux manuscrits afin de déterminer dans quelle mesure Hopkins y adhérait et les exploitait lors de la rédaction de deux de ses poèmes canoniques, God’s Grandeur et The Windhover. L’étude s’inscrit ainsi dans le champ de la critique génétique, une approche mise au point en France, particulièrement à l’Institut des textes et manuscrits modernes (ITEM). Ce sont donc sur des oeuvres littéraires françaises ou sur des textes en prose qu’ont porté la majorité des analyses à ce sujet. Suppressions, ajouts, substitutions et constantes entre différentes versions témoignent de ce qu’étaient les priorités de Hopkins dans sa quête pour atteindre l’effet désiré. Par conséquent, cette thèse s’efforce de dévoiler la signification des théories poétiques de Hopkins en établissant leur genèse et leur application respectives dans deux de ses poèmes selon une perspective de critique génétique. Elle contribue également à enrichir la critique génétique en l’appliquant à des oeuvres littéraires écrites en anglais et sous forme de poésie plutôt que de prose. Enfin, son objectif ultime est de raviver l’intérêt pour le poète Hopkins en tant que sujet viable d’étude, et de favoriser l’appréciation de ses prouesses tant comme théoricien poétique que comme poète.
Resumo:
2012
Resumo:
We have investigated genetic parentage in a Swiss population of tawny owls (Strix aluco). To this end, we performed genetic analysis for six polymorphic loci of 49 avian microsatellite loci tested for cross-species amplification. We found one extra-pair young out of 137 (0.7%) nestlings in 37 families (2.7%). There was no intra-specific brood parasitism. Our results are in accordance with previous findings for other raptors and owls that genetic monogamy is the rule. Female tawny owls cannot raise offspring without a substantial contribution by their mates. Hence one favoured hypothesis is that high paternal investment in reproduction selects for behaviour that prevents cuckoldry.
Genetic and antigenic analysis of Babesia bigemina isolates from five geographical regions of Brazil
Resumo:
A molecular epidemiological study was performed with Babesia bigemina isolates from five geographical regions of Brazil. The genetic analysis was done with random amplification of polymorphic DNA (RAPD), repetitive extragenic palindromic elements-polymerase chain reaction (REP-PCR) and enterobacterial repetitive intergenic consensus sequences-polymerase chain reaction (ERIC-PCR) that showed genetic polymorphism between these isolates and generated fingerprinting. In RAPD, ILO872 and ILO876 primers were able to detect at least one fingerprinting for each B. bigemina isolate. The amplification of B. bigemina DNA fragments by REP-PCR and ERIC-PCR gave evidence for the presence in this haemoprotozoan of the sequences described previously in microorganisms of the bacterial kingdom. For the first time it was demonstrated that both techniques can be used for genetic analysis of a protozoan parasite, although the ERIC-PCR was more discriminatory than REP-PCR. The dendogram with similarity coefficient among isolates showed two clusters and one subcluster. The Northeastern and Mid-Western isolates showed the greatest genetic diversity, while the Southeastern and Southern isolates were the closest. The antigenic analysis was done through indirect fluorescent antibody technique and Western blotting using a panel of monoclonal antibodies directed against epitopes on the merozoite membrane surface, rhoptries and membrane of infected erythrocytes. As expected, the merozoite variable surface antigens, major surface antigen (MSA)-1 and MSA-2 showed antigenic diversity. However, B cell epitopes on rhoptries and infected erythrocytes were conserved among all isolates studied. In this study it was possible to identify variable and conserved antigens, which had already been described as potential immunogens. Considering that an attenuated Babesia clone used as immunogen selected populations capable of evading the immunity induced by this vaccine, it is necessary to evaluate more deeply the cross-protection conferred by genetically more distant Brazilian B. bigemina isolates and make an evaluation of the polymorphism degree of variable antigens such as MSA-1 and MSA-2.