962 resultados para GAS-PHASE CATALYSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular dissociation reactions of doubly charged ions were reported, which resulted from a tandem mass spectrometer and a reversed geometry double focusing mass spectrometer by electron impact, Mass analyzed ion kinetic energy spectrometry (MIKES) was used to obtain the kinetic energy releases in charge separation reactions of doubly charged ions, The intercharge distances between the two charges at transition states can be calculated from the kinetic energy releases, Transition structures of unimolecular dissociation reactions were infered from MIKES and MS/MS.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas phase reactions of C-60 and C-70 with the ion system of acetone under chemical ionization conditions have been studied. C-60 and C-70 can react with acetyl and oxonium ions, which come from self-chemical ionization of acetone, to form adduct ions. In addition, C-60 and C-70 can accept protons to produce protonated ions. C-70 is more active in the above reactions than C-60 because of its stronger gas-phase basicity. A sigma-bond between C-60 and an acyl carbon atom can be formed to produce stable acetylated C-60 ions. The above results may be relevant to the acetylation reactions of C-60 in the condensed phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase ion-molecular reactions of C-60 and C-70 with the ion system of acetone have been studied in this paper. The ions of protoned and acetylized C-60 and C-70 were formed by the reactions of C-60 and C-70 with some ions which existed in the ion system when mass spectrometer worked on chemical ionization conditions. The reactivity of C-70 is greater than that of C-60. Results of quantum chemical calculation for the adduct ions showed a sigma bond between the acyl carbon atom and C-60 may be Formed. These results will provide some valuable informations on the condense-phase acetylization of C-60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A radical aromatic substitution resulting in biphenylcarboxylic acid is inferred for the decomposition of benzoyl peroxide from the chemical ionization and collision-induced dissociation mass spectra. The thermolysis of benzoyl peroxide gives rise to a benzoyloxy radical, which undergoes rapid decarboxylation and hydrogen abstraction leading to phenyl radical and benzoic acid, respectively. Attack of the resulting phenyl radical on the benzoic acid results in bipbenylcarboxylic acid. On the other hand, the phenyl radical abstracts a hydrogen atom to yield benzene, which is then subjected to the attack of a benzoyloxy radical, affording phenyl benzoate. This substitution reaction rather than the recombination of benzoyloxy and phenyl radicals is found to be responsible for the formation of phenyl benzoate under the present conditions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular Charge separation reactions of the doubly charged ions [C6H4Cl2]2+, [C6H3Cl]2+ produced in the ion source by electron impact from o-, m-, and p-dichloro benzene have been studied using mass analysed ion kinetic energy spectrometry. The values of kinetic energy releases (T) can be calculated from the energy dispersion of product ions. As T essentially reflects the release of coulombic energy, which can be used to calculate the approximate distances R between the two charges immediately before decomposition of the ions. From these data, some structural information about transiton states could be provided. The ECID and CID processes of above doubly charged ions, have also been studied. We found that the CID reactions of (C6H4Cl2)2+ could be used to distinguish three dichloro benzene isomers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The unimolecular charge separation reactions of the doubly charged ions FeC10H102+, FeC10H theta 2+, FeC10H82+ produced in the ion source by electron impact from ferrocene have been studied using Mass analyzed Ion Kinetic Energy Spectrometry (MIKES) technique. From the values of the kinetic energy releases (T), the intercharge distances (R) of the exploding doubly charged ions in their transition structures have been estimated and some structural informations about the transition states can be obtained. The collision induced reactions of the FeC10H102+ ion with Ar have been studied using MIKES, we postulate a new type of continuing reaction which may be "collisional charge separation induced dissociation".

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The structures of CH5O+ from two different reactions which are protonation of CH3OH from the above two pathways possess the same structures, CH3OH2+. The value of kinetic energy release for the metastable decomposition CH2OH3+-> CH2OH+ + H-2 determined from the experiment is in good agreement with that from theoretical calculations. The transition state of above reaction were disscussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Collision-Induced Dissociation (CID) or Collision Activation (CA) of ion involves high kinetic energy colliding with neutral gas molecules. In part of the ions, the translational energy is converted into excitation energy, Which may lead to subsequent ion decomposition. CID has developed into an important technique for elucidating the

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gas-phase photocatalysis of 1,4-dichlorobut-2-enes and 3,4-dichlorobut-1-ene (DCB) has been studied using TiO2 and 3%WO3/TiO2 supported on SiO2. DCB was found to oxidize efficiently over these catalysts; however, only low rates of CO2 formation were observed. With these chlorinated hydrocarbons, the catalysts were found to deactivate over time, probably via the formation of aldol condensation products of chloroacetaldehyde, which is the predominant intermediate observed. The variation in rate and selectivity of the oxidation reactions with O-2 concentration is reported and a mechanism is proposed. Using isotope ratio mass spectrometry, the initial step for the DCB removal has been shown not to be a carbon bond cleavage but is likely to be hydroxyl radical addition to the carbon-carbon double bond.