996 resultados para GAP-PHASE REGENERATION
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
The following thesis presents results obtained from both numerical simulation and laboratory experimentation (both of which were carried out by the author). When data is propagated along an optical transmission line some timing irregularities can occur such as timing jitter and phase wander. Traditionally these timing problems would have been corrected by converting the optical signal into the electrical domain and then compensating for the timing irregularity before converting the signal back into the optical domain. However, this thesis posses a potential solution to the problem by remaining completely in the optical domain, eliminating the need for electronics. This is desirable as not only does optical processing reduce the latency effect that their electronic counterpart have, it also holds the possibility of an increase in overall speed. A scheme was proposed which utilises the principle of wavelength conversion to dynamically convert timing irregularities (timing jitter and phase wander) into a change in wavelength (this occurs on a bit-by-bit level and so timing jitter and phase wander can be compensated for simultaneously). This was achieved by optically sampling a linearly chirped, locally generated clock source (the sampling function was achieved using a nonlinear optical loop mirror). The data, now with each bit or code word having a unique wavelength, is then propagated through a dispersion compensation module. The dispersion compensation effectively re-aligns the data in time and so thus, the timing irregularities are removed. The principle of operation was tested using computer simulation before being re-tested in a laboratory environment. A second stage was added to the device to create 3R regeneration. The second stage is used to simply convert the timing suppressed data back into a single wavelength. By controlling the relative timing displacement between stage one and stage two, the wavelength that is finally produced can be controlled.
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
We present a concept for all-optical differential phase-shift keying (DPSK) signal regeneration, based on a new design of Raman amplified nonlinear loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase noise reduction in high-speed DPSK systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
High-speed optical clock recovery, demultiplexing and data regeneration will be integral parts of any future photonic network based on high bit-rate OTDM. Much research has been conducted on devices that perform these functions, however to date each process has been demonstrated independently. A very promising method of all-optical switching is that of a semiconductor optical amplifier-based nonlinear optical loop mirror (SOA-NOLM). This has various advantages compared with the standard fiber NOLM, most notably low switching power, compact size and stability. We use the SOA-NOLM as an all-optical mixer in a classical phase-locked loop arrangement to achieve optical clock recovery, while at the same time achieving data regeneration in a single compact device
Resumo:
We present a concept for all-optical differential phase-shift keying (DPSK) signal regeneration, based on a new design of Raman amplified nonlinear loop mirror (RA-NOLM). We demonstrate simultaneous amplitude-shape regeneration and phase noise reduction in high-speed DPSK systems by use of the RA-NOLM combined with spectral filtering.
Resumo:
We propose a new all-optical, all-fibre scheme for conversion of time-division multiplexed to wavelength-division multiplexed signals using cross-phase modulation with triangular pulses. Partial signal regeneration using this technique is also demonstrated.
Resumo:
We develop an analytical method for optimizing phase sensitive amplifiers for regeneration in multilevel phase encoded transmission systems. The model accurately predicts the optimum transfer function characteristics and identifies operating tolerances for different signal constellations and transmission scenarios. The results demonstrate the scalability of the scheme and show the significance of having simultaneous optimization of the transfer function and the signal alphabet. The model is general and can be applied to any regenerative system. © 2013 Optical Society of America.
Resumo:
We demonstrate the first multi-wavelength regeneration of quadrature phase shift keyed (QPSK) formatted signals, showing a simultaneous Q2-factor improvement in excess of 3.8 dB for signals degraded by phase distortion
Resumo:
We demonstrate simultaneous demultiplexing, data regeneration and clock recovery at 10Gbits/s, using a single semiconductor optical amplifier–based nonlinear-optical loop mirror in a phase-locked loop configuration.
Resumo:
A black box phase sensitive amplifier based 3R regeneration scheme is proposed for non-return to zero quadrature phase shift keyed formatted signals. Performance improvements of more than 2 dB are achieved at the presence of input phase distortion.
Resumo:
Gas phase photoreforming of methanol using a Pt/TiO2 photocatalyst has been performed under flow conditions at elevated temperatures. Comparing the activity of the reforming process as a function of temperature under dark and irradiated conditions shows a significant enhancement in the rate of H2 production using the photo-assisted conditions at temperatures between 100-140 °C. At higher temperatures, the effect of irradiation is small with the process dominated by the thermal process. Deactivation of the catalyst was observed under irradiation but the catalyst was easily regenerated using an oxygen treatment at 120 °C. Diffuse Reflectance Infra-red Fourier Transform Spectroscopy (DRIFTS) showed that the activity of the catalyst could be correlated with the presence of the photogenerated trapped electrons. In addition, lower amounts of CO adsorbed on Pt, compared to those observed in the dark reaction, were found for the UV-irradiated systems. It is proposed that CO and adsorbed intermediates, such as formate, can act as inhibitors in the photoreforming process and this is further supported by the observation that, before and after the regeneration process in O2, the CO and surface adsorbed organic intermediate products are removed and the activity is recovered.
Resumo:
This report presents an evaluation of Phase 1 of the Working for Families Fund (WFF) covering 2004-06. WFF was established to invest in new initiatives to improve the employability of parents who have difficulties in participating in the labour market, specifically in employment, education or training. The Fund supported these parents through helping them find sustainable childcare solutions and through providing or accessing other relevant employability-related services. In rural areas, barriers created by poor transport, limited services and the lack of a critical mass of clients were also particularly important. WFF contributes to the Scottish Executive’s Closing the Opportunity Gap approach to tackling poverty and disadvantage, by improving rates of employment and economic activity, and to its commitment to eradicating child poverty within a generation.
Resumo:
The presence of gap junction coupling among neurons of the central nervous systems has been appreciated for some time now. In recent years there has been an upsurge of interest from the mathematical community in understanding the contribution of these direct electrical connections between cells to large-scale brain rhythms. Here we analyze a class of exactly soluble single neuron models, capable of producing realistic action potential shapes, that can be used as the basis for understanding dynamics at the network level. This work focuses on planar piece-wise linear models that can mimic the firing response of several different cell types. Under constant current injection the periodic response and phase response curve (PRC) is calculated in closed form. A simple formula for the stability of a periodic orbit is found using Floquet theory. From the calculated PRC and the periodic orbit a phase interaction function is constructed that allows the investigation of phase-locked network states using the theory of weakly coupled oscillators. For large networks with global gap junction connectivity we develop a theory of strong coupling instabilities of the homogeneous, synchronous and splay state. For a piece-wise linear caricature of the Morris-Lecar model, with oscillations arising from a homoclinic bifurcation, we show that large amplitude oscillations in the mean membrane potential are organized around such unstable orbits.
Resumo:
Gap junction coupling is ubiquitous in the brain, particularly between the dendritic trees of inhibitory interneurons. Such direct non-synaptic interaction allows for direct electrical communication between cells. Unlike spike-time driven synaptic neural network models, which are event based, any model with gap junctions must necessarily involve a single neuron model that can represent the shape of an action potential. Indeed, not only do neurons communicating via gaps feel super-threshold spikes, but they also experience, and respond to, sub-threshold voltage signals. In this chapter we show that the so-called absolute integrate-and-fire model is ideally suited to such studies. At the single neuron level voltage traces for the model may be obtained in closed form, and are shown to mimic those of fast-spiking inhibitory neurons. Interestingly in the presence of a slow spike adaptation current the model is shown to support periodic bursting oscillations. For both tonic and bursting modes the phase response curve can be calculated in closed form. At the network level we focus on global gap junction coupling and show how to analyze the asynchronous firing state in large networks. Importantly, we are able to determine the emergence of non-trivial network rhythms due to strong coupling instabilities. To illustrate the use of our theoretical techniques (particularly the phase-density formalism used to determine stability) we focus on a spike adaptation induced transition from asynchronous tonic activity to synchronous bursting in a gap-junction coupled network.