923 resultados para Fuzzy rule extraction
Resumo:
In the world stage, the environmental condition has been a big public policies issue. A clear understanding of the parameters that determine the state of the environment is essential for estimation of the quality of life of the population, not least since ecosystems are highly complex. Consequently, definition of public policies demands the use of evaluation tools that can combine and quantify information in a clear way. The use of indicators and indices that are able to translate the complexity of environmental conditions in cities into simpler terms has been increasingly effective in decision-making, since they assist in general evaluation of the situation in question, identification of priority actions and anticipation of future trends. In an attempt to evaluate the environmental conditions of the Brazilian city, Sorocaba, an Environmental Quality Fuzzy Index (IFQAmb) was proposed. In this work this methodology is improved. After reviewing the IFQAmb methodology, a number of changes in the index are proposed. Additional variables are suggested, derived from a State Environment Department program whose objective is to grant municipalities the title of Municipio Verde e Azul (Green and Blue City). In addition, a new rule base is being drafted to enable consideration of all possibilities, since in the existing version the use of specific criteria eliminates a significant number of rules. The changes seek to define with clarity and precision the conceptual aspects and structure of the IFQAmb, so that it can provide an even more effective evaluation of environmental performance, guiding future actions in order to improve the living conditions of the population of Sorocaba.
Resumo:
The objective of this work is to determine the membership functions for the construction of a fuzzy controller to evaluate the energy situation of the company with respect to load and power factors. The energy assessment of a company is performed by technicians and experts based on the indices of load and power factors, and analysis of the machines used in production processes. This assessment is conducted periodically to detect whether the procedures performed by employees in relation to how of use electricity energy are correct. With a fuzzy controller, this performed can be done by machines. The construction of a fuzzy controller is initially characterized by the definition of input and output variables, and their associated membership functions. We also need to define a method of inference and a processor output. Finally, you need the help of technicians and experts to build a rule base, consisting of answers that provide these professionals in function of characteristics of the input variables. The controller proposed in this paper has as input variables load and power factors, and output the company situation. Their membership functions representing fuzzy sets called by linguistic qualities, as “VERY BAD” and “GOOD”. With the method of inference Mandani and the processor to exit from the Center of Area chosen, the structure of a fuzzy controller is established, simply by the choice by technicians and experts of the field energy to determine a set of rules appropriate for the chosen company. Thus, the interpretation of load and power factors by software comes to meeting the need of creating a single index that indicates an overall basis (rational and efficient) as the energy is being used.
Resumo:
Backgrounds Ea aims: The boundaries between the categories of body composition provided by vectorial analysis of bioimpedance are not well defined. In this paper, fuzzy sets theory was used for modeling such uncertainty. Methods: An Italian database with 179 cases 18-70 years was divided randomly into developing (n = 20) and testing samples (n = 159). From the 159 registries of the testing sample, 99 contributed with unequivocal diagnosis. Resistance/height and reactance/height were the input variables in the model. Output variables were the seven categories of body composition of vectorial analysis. For each case the linguistic model estimated the membership degree of each impedance category. To compare such results to the previously established diagnoses Kappa statistics was used. This demanded singling out one among the output set of seven categories of membership degrees. This procedure (defuzzification rule) established that the category with the highest membership degree should be the most likely category for the case. Results: The fuzzy model showed a good fit to the development sample. Excellent agreement was achieved between the defuzzified impedance diagnoses and the clinical diagnoses in the testing sample (Kappa = 0.85, p < 0.001). Conclusions: fuzzy linguistic model was found in good agreement with clinical diagnoses. If the whole model output is considered, information on to which extent each BIVA category is present does better advise clinical practice with an enlarged nosological framework and diverse therapeutic strategies. (C) 2012 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
Resumo:
OBJECTIVE: This study proposes a new approach that considers uncertainty in predicting and quantifying the presence and severity of diabetic peripheral neuropathy. METHODS: A rule-based fuzzy expert system was designed by four experts in diabetic neuropathy. The model variables were used to classify neuropathy in diabetic patients, defining it as mild, moderate, or severe. System performance was evaluated by means of the Kappa agreement measure, comparing the results of the model with those generated by the experts in an assessment of 50 patients. Accuracy was evaluated by an ROC curve analysis obtained based on 50 other cases; the results of those clinical assessments were considered to be the gold standard. RESULTS: According to the Kappa analysis, the model was in moderate agreement with expert opinions. The ROC analysis (evaluation of accuracy) determined an area under the curve equal to 0.91, demonstrating very good consistency in classifying patients with diabetic neuropathy. CONCLUSION: The model efficiently classified diabetic patients with different degrees of neuropathy severity. In addition, the model provides a way to quantify diabetic neuropathy severity and allows a more accurate patient condition assessment.
Resumo:
Over the last 60 years, computers and software have favoured incredible advancements in every field. Nowadays, however, these systems are so complicated that it is difficult – if not challenging – to understand whether they meet some requirement or are able to show some desired behaviour or property. This dissertation introduces a Just-In-Time (JIT) a posteriori approach to perform the conformance check to identify any deviation from the desired behaviour as soon as possible, and possibly apply some corrections. The declarative framework that implements our approach – entirely developed on the promising open source forward-chaining Production Rule System (PRS) named Drools – consists of three components: 1. a monitoring module based on a novel, efficient implementation of Event Calculus (EC), 2. a general purpose hybrid reasoning module (the first of its genre) merging temporal, semantic, fuzzy and rule-based reasoning, 3. a logic formalism based on the concept of expectations introducing Event-Condition-Expectation rules (ECE-rules) to assess the global conformance of a system. The framework is also accompanied by an optional module that provides Probabilistic Inductive Logic Programming (PILP). By shifting the conformance check from after execution to just in time, this approach combines the advantages of many a posteriori and a priori methods proposed in literature. Quite remarkably, if the corrective actions are explicitly given, the reactive nature of this methodology allows to reconcile any deviations from the desired behaviour as soon as it is detected. In conclusion, the proposed methodology brings some advancements to solve the problem of the conformance checking, helping to fill the gap between humans and the increasingly complex technology.
Resumo:
In questo lavoro si introducono i concetti di base di Natural Language Processing, soffermandosi su Information Extraction e analizzandone gli ambiti applicativi, le attività principali e la differenza rispetto a Information Retrieval. Successivamente si analizza il processo di Named Entity Recognition, focalizzando l’attenzione sulle principali problematiche di annotazione di testi e sui metodi per la valutazione della qualità dell’estrazione di entità. Infine si fornisce una panoramica della piattaforma software open-source di language processing GATE/ANNIE, descrivendone l’architettura e i suoi componenti principali, con approfondimenti sugli strumenti che GATE offre per l'approccio rule-based a Named Entity Recognition.
Resumo:
The data acquired by Remote Sensing systems allow obtaining thematic maps of the earth's surface, by means of the registered image classification. This implies the identification and categorization of all pixels into land cover classes. Traditionally, methods based on statistical parameters have been widely used, although they show some disadvantages. Nevertheless, some authors indicate that those methods based on artificial intelligence, may be a good alternative. Thus, fuzzy classifiers, which are based on Fuzzy Logic, include additional information in the classification process through based-rule systems. In this work, we propose the use of a genetic algorithm (GA) to select the optimal and minimum set of fuzzy rules to classify remotely sensed images. Input information of GA has been obtained through the training space determined by two uncorrelated spectral bands (2D scatter diagrams), which has been irregularly divided by five linguistic terms defined in each band. The proposed methodology has been applied to Landsat-TM images and it has showed that this set of rules provides a higher accuracy level in the classification process
Resumo:
The focus of this chapter is to study feature extraction and pattern classification methods from two medical areas, Stabilometry and Electroencephalography (EEG). Stabilometry is the branch of medicine responsible for examining balance in human beings. Balance and dizziness disorders are probably two of the most common illnesses that physicians have to deal with. In Stabilometry, the key nuggets of information in a time series signal are concentrated within definite time periods are known as events. In this chapter, two feature extraction schemes have been developed to identify and characterise the events in Stabilometry and EEG signals. Based on these extracted features, an Adaptive Fuzzy Inference Neural network has been applied for classification of Stabilometry and EEG signals.
Resumo:
La tesis doctoral CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY constituye un conjunto de nuevas aportaciones al análisis de dos elementos básicos de la lógica fuzzy: los mecanismos de inferencia y la representación de predicados vagos. La memoria se encuentra dividida en dos partes que corresponden a los dos aspectos señalados. En la Parte I se estudia el concepto básico de «estado lógico borroso». Un estado lógico borroso es un punto fijo de la aplicación generada a partir de la regla de inferencia conocida como modus ponens generalizado. Además, un preorden borroso puede ser representado mediante los preórdenes elementales generados por el conjunto de sus estados lógicos borrosos. El Capítulo 1 está dedicado a caracterizar cuándo dos estados lógicos dan lugar al mismo preorden elemental, obteniéndose también un representante de la clase de todos los estados lógicos que generan el mismo preorden elemental. El Capítulo finaliza con la caracterización del conjunto de estados lógicos borrosos de un preorden elemental. En el Capítulo 2 se obtiene un subconjunto borroso trapezoidal como una clase de una relación de indistinguibilidad. Finalmente, el Capítulo 3 se dedica a estudiar dos tipos de estados lógicos clásicos: los irreducibles y los minimales. En el Capítulo 4, que inicia la Parte II de la memoria, se aborda el problema de obtener la función de compatibilidad de un predicado vago. Se propone un método, basado en el conocimiento del uso del predicado mediante un conjunto de reglas y de ciertos elementos distinguidos, que permite obtener una expresión general de la función de pertenencia generalizada de un subconjunto borroso que realice la función de extensión del predicado borroso. Dicho método permite, en ciertos casos, definir un conjunto de conectivas multivaluadas asociadas al predicado. En el último capítulo se estudia la representación de antónimos y sinónimos en lógica fuzzy a través de auto-morfismos. Se caracterizan los automorfismos sobre el intervalo unidad cuando sobre él se consideran dos operaciones: una t-norma y una t-conorma ambas arquimedianas. The PhD Thesis CONTRIBUCIÓN AL ESTUDIO DE DOS CONCEPTOS BÁSICOS DE LA LÓGICA FUZZY is a contribution to two basic concepts of the Fuzzy Logic. It is divided in two parts, the first is devoted to a mechanism of inference in Fuzzy Logic, and the second to the representation of vague predicates. «Fuzzy Logic State» is the basic concept in Part I. A Fuzzy Logic State is a fixed-point for the mapping giving the Generalized Modus Ponens Rule of inference. Moreover, a fuzzy preordering can be represented by the elementary preorderings generated by its Fuzzy Logic States. Chapter 1 contemplates the identity of elementary preorderings and the selection of representatives for the classes modulo this identity. This chapter finishes with the characterization of the set of Fuzzy Logic States of an elementary preordering. In Chapter 2 a Trapezoidal Fuzzy Set as a class of a relation of Indistinguishability is obtained. Finally, Chapter 3 is devoted to study two types of Classical Logic States: irreducible and minimal. Part II begins with Chapter 4 dealing with the problem of obtaining a Compa¬tibility Function for a vague predicate. When the use of a predicate is known by means of a set of rules and some distinguished elements, a method to obtain the general expression of the Membership Function is presented. This method allows, in some cases, to reach a set of multivalued connectives associated to the predicate. Last Chapter is devoted to the representation of antonyms and synonyms in Fuzzy Logic. When the unit interval [0,1] is endowed with both an archimedean t-norm and a an archi-medean t-conorm, it is showed that the automorphisms' group is just reduced to the identity function.
Resumo:
Solar drying is one of the important processes used for extending the shelf life of agricultural products. Regarding consumer requirements, solar drying should be more suitable in terms of curtailing total drying time and preserving product quality. Therefore, the objective of this study was to develop a fuzzy logic-based control system, which performs a ?human-operator-like? control approach through using the previously developed low-cost model-based sensors. Fuzzy logic toolbox of MatLab and Borland C++ Builder tool were utilized to develop a required control system. An experimental solar dryer, constructed by CONA SOLAR (Austria) was used during the development of the control system. Sensirion sensors were used to characterize the drying air at different positions in the dryer, and also the smart sensor SMART-1 was applied to be able to include the rate of wood water extraction into the control system (the difference of absolute humidity of the air between the outlet and the inlet of solar dryer is considered by SMART-1 to be the extracted water). A comprehensive test over a 3 week period for different fuzzy control models has been performed, and data, obtained from these experiments, were analyzed. Findings from this study would suggest that the developed fuzzy logic-based control system is able to tackle difficulties, related to the control of solar dryer process.
Resumo:
En el trabajo que aquí presentamos se incluye la base teórica (sintaxis y semántica) y una implementación de un framework para codificar el razonamiento de la representación difusa o borrosa del mundo (tal y como nosotros, seres humanos, entendemos éste). El interés en la realización de éste trabajo parte de dos fuentes: eliminar la complejidad existente cuando se realiza una implementación con un lenguaje de programación de los llamados de propósito general y proporcionar una herramienta lo suficientemente inteligente para dar respuestas de forma constructiva a consultas difusas o borrosas. El framework, RFuzzy, permite codificar reglas y consultas en una sintaxis muy cercana al lenguaje natural usado por los seres humanos para expresar sus pensamientos, pero es bastante más que eso. Permite representar conceptos muy interesantes, como fuzzificaciones (funciones usadas para convertir conceptos no difusos en difusos), valores por defecto (que se usan para devolver resultados un poco menos válidos que los que devolveríamos si tuviésemos la información necesaria para calcular los más válidos), similaridad entre atributos (característica que utilizamos para buscar aquellos individuos en la base de datos con una característica similar a la buscada), sinónimos o antónimos y, además, nos permite extender el numero de conectivas y modificadores (incluyendo modificadores de negación) que podemos usar en las reglas y consultas. La personalización de la definición de conceptos difusos (muy útil para lidiar con el carácter subjetivo de los conceptos borrosos, donde nos encontramos con que cualificar a alguien de “alto” depende de la altura de la persona que cualifica) es otra de las facilidades incluida. Además, RFuzzy implementa la semántica multi-adjunta. El interés en esta reside en que introduce la posibilidad de obtener la credibilidad de una regla a partir de un conjunto de datos y una regla dada y no solo el grado de satisfacción de una regla a partir de el universo modelado en nuestro programa. De esa forma podemos obtener automáticamente la credibilidad de una regla para una determinada situación. Aún cuando la contribución teórica de la tesis es interesante en si misma, especialmente la inclusión del modificador de negacion, sus multiples usos practicos lo son también. Entre los diferentes usos que se han dado al framework destacamos el reconocimiento de emociones, el control de robots, el control granular en computacion paralela/distribuída y las busquedas difusas o borrosas en bases de datos. ABSTRACT In this work we provide a theoretical basis (syntax and semantics) and a practical implementation of a framework for encoding the reasoning and the fuzzy representation of the world (as human beings understand it). The interest for this work comes from two sources: removing the existing complexity when doing it with a general purpose programming language (one developed without focusing in providing special constructions for representing fuzzy information) and providing a tool intelligent enough to answer, in a constructive way, expressive queries over conventional data. The framework, RFuzzy, allows to encode rules and queries in a syntax very close to the natural language used by human beings to express their thoughts, but it is more than that. It allows to encode very interesting concepts, as fuzzifications (functions to easily fuzzify crisp concepts), default values (used for providing results less adequate but still valid when the information needed to provide results is missing), similarity between attributes (used to search for individuals with a characteristic similar to the one we are looking for), synonyms or antonyms and it allows to extend the number of connectives and modifiers (even negation) we can use in the rules. The personalization of the definition of fuzzy concepts (very useful for dealing with the subjective character of fuzziness, in which a concept like tall depends on the height of the person performing the query) is another of the facilities included. Besides, RFuzzy implements the multi-adjoint semantics. The interest in them is that in addition to obtaining the grade of satisfaction of a consequent from a rule, its credibility and the grade of satisfaction of the antecedents we can determine from a set of data how much credibility we must assign to a rule to model the behaviour of the set of data. So, we can determine automatically the credibility of a rule for a particular situation. Although the theoretical contribution is interesting by itself, specially the inclusion of the negation modifier, the practical usage of it is equally important. Between the different uses given to the framework we highlight emotion recognition, robocup control, granularity control in parallel/distributed computing and flexible searches in databases.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Automatic signature verification is a well-established and an active area of research with numerous applications such as bank check verification, ATM access, etc. This paper proposes a novel approach to the problem of automatic off-line signature verification and forgery detection. The proposed approach is based on fuzzy modeling that employs the Takagi-Sugeno (TS) model. Signature verification and forgery detection are carried out using angle features extracted from box approach. Each feature corresponds to a fuzzy set. The features are fuzzified by an exponential membership function involved in the TS model, which is modified to include structural parameters. The structural parameters are devised to take account of possible variations due to handwriting styles and to reflect moods. The membership functions constitute weights in the TS model. The optimization of the output of the TS model with respect to the structural parameters yields the solution for the parameters. We have also derived two TS models by considering a rule for each input feature in the first formulation (Multiple rules) and by considering a single rule for all input features in the second formulation. In this work, we have found that TS model with multiple rules is better than TS model with single rule for detecting three types of forgeries; random, skilled and unskilled from a large database of sample signatures in addition to verifying genuine signatures. We have also devised three approaches, viz., an innovative approach and two intuitive approaches using the TS model with multiple rules for improved performance. (C) 2004 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Fast Classification (FC) networks were inspired by a biologically plausible mechanism for short term memory where learning occurs instantaneously. Both weights and the topology for an FC network are mapped directly from the training samples by using a prescriptive training scheme. Only two presentations of the training data are required to train an FC network. Compared with iterative learning algorithms such as Back-propagation (which may require many hundreds of presentations of the training data), the training of FC networks is extremely fast and learning convergence is always guaranteed. Thus FC networks may be suitable for applications where real-time classification is needed. In this paper, the FC networks are applied for the real-time extraction of gene expressions for Chlamydia microarray data. Both the classification performance and learning time of the FC networks are compared with the Multi-Layer Proceptron (MLP) networks and support-vector-machines (SVM) in the same classification task. The FC networks are shown to have extremely fast learning time and comparable classification accuracy.
Resumo:
Pac-Man is a well-known, real-time computer game that provides an interesting platform for research. We describe an initial approach to developing an artificial agent that replaces the human to play a simplified version of Pac-Man. The agent is specified as a simple finite state machine and ruleset. with parameters that control the probability of movement by the agent given the constraints of the maze at some instant of time. In contrast to previous approaches, the agent represents a dynamic strategy for playing Pac-Man, rather than a pre-programmed maze-solving method. The agent adaptively "learns" through the application of population-based incremental learning (PBIL) to adjust the agents' parameters. Experimental results are presented that give insight into some of the complexities of the game, as well as highlighting the limitations and difficulties of the representation of the agent.