888 resultados para Fuzzy Domain Ontology, Fuzzy Subsumption, Granular Computing, Granular IR Systems, Information Retrieval
Resumo:
MapReduce frameworks such as Hadoop are well suited to handling large sets of data which can be processed separately and independently, with canonical applications in information retrieval and sales record analysis. Rapid advances in sequencing technology have ensured an explosion in the availability of genomic data, with a consequent rise in the importance of large scale comparative genomics, often involving operations and data relationships which deviate from the classical Map Reduce structure. This work examines the application of Hadoop to patterns of this nature, using as our focus a wellestablished workflow for identifying promoters - binding sites for regulatory proteins - Across multiple gene regions and organisms, coupled with the unifying step of assembling these results into a consensus sequence. Our approach demonstrates the utility of Hadoop for problems of this nature, showing how the tyranny of the "dominant decomposition" can be at least partially overcome. It also demonstrates how load balance and the granularity of parallelism can be optimized by pre-processing that splits and reorganizes input files, allowing a wide range of related problems to be brought under the same computational umbrella.
Resumo:
Newsletter ACM SIGIR Forum: The Seventeenth Australian Document Computing Symposium was held in Dunedin, New Zealand on the 5th and 6th of December 2012. In total twenty four papers were submitted. From those eleven were accepted for full presentation and 8 for short presentation. A poster session was held jointly with the Australasian Language Technology Workshop.
Resumo:
Information security and privacy in the healthcare domain is a complex and challenging problem for computer scientists, social scientists, law experts and policy makers. Appropriate healthcare provision requires specialized knowledge, is information intensive and much patient information is of a particularly sensitive nature. Electronic health record systems provide opportunities for information sharing which may enhance healthcare services, for both individuals and populations. However, appropriate information management measures are essential for privacy preservation...
Resumo:
As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.
Resumo:
Neuroimaging studies have shown neuromuscular electrical stimulation (NMES)-evoked movements activate regions of the cortical sensorimotor network, including the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), and secondary somatosensory area (S2), as well as regions of the prefrontal cortex (PFC) known to be involved in pain processing. The aim of this study, on nine healthy subjects, was to compare the cortical network activation profile and pain ratings during NMES of the right forearm wrist extensor muscles at increasing current intensities up to and slightly over the individual maximal tolerated intensity (MTI), and with reference to voluntary (VOL) wrist extension movements. By exploiting the capability of the multi-channel time domain functional near-infrared spectroscopy technique to relate depth information to the photon time-of-flight, the cortical and superficial oxygenated (O2Hb) and deoxygenated (HHb) hemoglobin concentrations were estimated. The O2Hb and HHb maps obtained using the General Linear Model (NIRS-SPM) analysis method, showed that the VOL and NMES-evoked movements significantly increased activation (i.e., increase in O2Hb and corresponding decrease in HHb) in the cortical layer of the contralateral sensorimotor network (SMC, PMC/SMA, and S2). However, the level and area of contralateral sensorimotor network (including PFC) activation was significantly greater for NMES than VOL. Furthermore, there was greater bilateral sensorimotor network activation with the high NMES current intensities which corresponded with increased pain ratings. In conclusion, our findings suggest that greater bilateral sensorimotor network activation profile with high NMES current intensities could be in part attributable to increased attentional/pain processing and to increased bilateral sensorimotor integration in these cortical regions.
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H. 264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of our work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can effect in reduced hardware utilization and fast recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust in outdoor as well as indoor testing scenarios. We have tested our method on two benchmark action datasets and achieved more than 85% accuracy. The proposed algorithm classifies actions with speed (>2000 fps) approximately 100 times more than existing state-of-the-art pixel-domain algorithms.
Resumo:
This paper discusses a novel high-speed approach for human action recognition in H.264/AVC compressed domain. The proposed algorithm utilizes cues from quantization parameters and motion vectors extracted from the compressed video sequence for feature extraction and further classification using Support Vector Machines (SVM). The ultimate goal of the proposed work is to portray a much faster algorithm than pixel domain counterparts, with comparable accuracy, utilizing only the sparse information from compressed video. Partial decoding rules out the complexity of full decoding, and minimizes computational load and memory usage, which can result in reduced hardware utilization and faster recognition results. The proposed approach can handle illumination changes, scale, and appearance variations, and is robust to outdoor as well as indoor testing scenarios. We have evaluated the performance of the proposed method on two benchmark action datasets and achieved more than 85 % accuracy. The proposed algorithm classifies actions with speed (> 2,000 fps) approximately 100 times faster than existing state-of-the-art pixel-domain algorithms.
Resumo:
O problema que justifica o presente estudo refere-se à falta de semântica nos mecanismos de busca na Web. Para este problema, o consórcio W3 vem desenvolvendo tecnologias que visam construir uma Web Semântica. Entre estas tecnologias, estão as ontologias de domínio. Neste sentido, o objetivo geral desta dissertação é discutir as possibilidades de se imprimir semântica às buscas nos agregadores de notícia da Web. O objetivo específico é apresentar uma aplicação que usa uma classificação semi-automática de notícias, reunindo, para tanto, as tecnologias de busca da área de recuperação de informação com as ontologias de domínio. O sistema proposto é uma aplicação para a Web capaz de buscar notícias sobre um domínio específico em portais de informação. Ela utiliza a API do Google Maps V1 para a localização georreferenciada da notícia, sempre que esta informação estiver disponível. Para mostrar a viabilidade da proposta, foi desenvolvido um exemplo apoiado em uma ontologia para o domínio de chuvas e suas consequências. Os resultados obtidos por este novo Feed de base ontológica são alocados em um banco de dados e disponibilizados para consulta via Web. A expectativa é que o Feed proposto seja mais relevante em seus resultados do que um Feed comum. Os resultados obtidos com a união de tecnologias patrocinadas pelo consórcio W3 (XML, RSS e ontologia) e ferramentas de busca em página Web foram satisfatórios para o propósito pretendido. As ontologias mostram-se como ferramentas de usos múltiplos, e seu valor de análise em buscas na Web pode ser ampliado com aplicações computacionais adequadas para cada caso. Como no exemplo apresentado nesta dissertação, à palavra chuva agregaram-se outros conceitos, que estavam presentes nos desdobramentos ocasionados por ela. Isto realçou a ligação do evento chuva com as consequências que ela provoca - ação que só foi possível executar através de um recorte do conhecimento formal envolvido.
Resumo:
We deliver the general conditions on the synthetic proportions for a homogeneous mixture of ferro- and nonmagnetic substances to become left-handed. As an alternative for left-handed metamaterials, we consider mixing ferromagnetic materials with nonmagnetic microscopic particles. In the mixture, the ferromagnetic material provides the needed permeability via domain wall resonances at high frequencies, whereas the nonmagnetic material gives the required permittivity. Using the effective medium theory, we have found that when the concentration of the nonmagnetic particles falls into a certain range, the refractive index of the mixture is negative, n < 0, which includes the double negative ( epsilon < 0 and mu < 0) and other cases ( e. g. epsilon < 0 and mu > 0). We finally give the requirements on the microscopic material properties for the ferromagnetic materials to reach the domain wall resonances at high frequencies.
Resumo:
Este trabalho tem por objetivo propor um modelo de ontologia simples e generalista, capaz de descrever os conceitos mais básicos que permeiam o domínio de conhecimento dos jornais on-line brasileiros não especializados, fundamentado tanto na prática quanto conceitualmente, em conformidade com os princípios da Web Semântica. A partir de uma nova forma de classificação e organização do conteúdo, a ontologia proposta deve ter condições de atender as necessidades comuns de ambas as partes, jornal e leitor, que são, resumidamente, a busca e a recuperação das informações.
Resumo:
A modelagem orientada a agentes surge como paradigma no desenvolvimento de software, haja vista a quantidade de iniciativas e estudos que remetem à utilização de agentes de software como solução para tratar de problemas mais complexos. Apesar da popularidade de utilização de agentes, especialistas esbarram na falta de universalidade de uma metodologia para construção dos Sistemas Multiagentes (MAS), pois estas acabam pecando pelo excesso ou falta de soluções para modelar o problema. Esta dissertação propõe o uso de uma Ontologia sobre Metodologias Multiagentes, seguindo os princípios da Engenharia de Métodos Situacionais que se propõe a usar fragmentos de métodos para construção de metodologias baseados na especificidade do projeto em desenvolvimento. O objetivo do estudo é sedimentar o conhecimento na área de Metodologias Multiagentes, auxiliando o engenheiro de software a escolher a melhor metodologia ou o melhor fragmento de metodologia capaz de modelar um Sistema Multiagentes.
Resumo:
Este trabalho está inserido no campo da Geomática e se concentra, mais especificamente, no estudo de métodos para exploração e seleção de rotas em espaços geográficos sem delimitação prévia de vias trafegáveis. As atividades que poderiam se beneficiar de estudos desse tipo estão inseridas em áreas da engenharia, logística e robótica. Buscou-se, com as pesquisas realizadas nesse trabalho, elaborar um modelo computacional capaz de consultar as informações de um terreno, explorar uma grande quantidade de rotas viáveis e selecionar aquelas rotas que oferecessem as melhores condições de trajetória entre dois pontos de um mapa. Foi construído um sistema a partir do modelo computacional proposto para validar sua eficiência e aplicabilidade em diferentes casos de estudo. Para que esse sistema fosse construído, foram combinados conceitos de sistemas baseados em agentes, lógica nebulosa e planejamento de rotas em robótica. As informações de um terreno foram organizadas, consumidas e apresentadas pelo sistema criado, utilizando mapas digitais. Todas as funcionalidades do sistema foram construídas por meio de software livre. Como resultado, esse trabalho de pesquisa disponibiliza um sistema eficiente para o estudo, o planejamento ou a simulação de rotas sobre mapas digitais, a partir de um módulo de inferência nebuloso aplicado à classificação de rotas e um módulo de exploração de rotas baseado em agentes autônomos. A perspectiva para futuras aplicações utilizando o modelo computacional apresentado nesse trabalho é bastante abrangente. Acredita-se que, a partir dos resultados alcançados, esse sistema possa ajudar a reduzir custos e automatizar equipamentos em diversas atividades humanas.
Resumo:
政府信息检索系统作为政府信息公开平台的重要组成部分,对于用户从大量信息中准确查找所需信息起到关键作用,然而现有政府信息检索系统存在两个主要问题:一是系统采用的基于关键词匹配的检索技术忽视了对于用户检索条件的语义的理解,缺乏对于文档实质内涵的准确描述;二是由于对政府信息领域知识的缺乏,用户不能很好地提出符合自己检索需求的检索条件。这两个问题导致检索结果远远不能满足用户的要求。 本体是“概念模型的明确的规范说明”,它提供明确定义的词汇表,描述概念和概念之间的关系,被当作某个领域内不同主体之间进行交流的一种语义基础。它被广泛的应用于信息检索,特别是基于知识的检索中,能显著提高检索系统的查全率和查准率。 本文提出了构建政府信息领域本体并将其应用于政府信息检索系统的方案。首先,研究了现有的领域本体构建方法;在分析了政府信息领域的特点,考察了该领域可用资源的基础上,提出了基于政务主题词表的政府信息领域本体的构建方法。该方法充分利用了《综合电子政务主题词表》中已有的主题词和关系,保证了本体概念添加的完备性和科学性,减少了对领域专家的依赖,提高了构建效率。 设计和实现了基于领域本体的政府信息检索系统。该系统以领域本体为核心,对检索条件进行了扩展,既解决了检索词同政府信息中的公文用词存在差异的问题,又进一步明确了用户的检索需求;对政府信息文档进行了语义标注,提高了检索匹配时的准确度。同时,系统将与检索条件相关的领域概念反馈给用户,便于用户了解领域知识,进一步优化检索条件,获得更全更准的检索结果。
Resumo:
为了构建政府信息领域本体,将其应用于政府信息检索系统中,提高系统的查全率和查准率,提出了利用现有术语丰富的政务主题词表构建政府信息领域本体的方法。该方法以政府信息这个核心概念和其属性为中心,将政务主题词表中的主题词和词间关系有序的转化到本体中,并在此基础上进一步挖掘了领域业务相关的关系,丰富了本体蕴涵的知识。进而将本体应用于政府信息检索系统中,改善了原系统的检索效果,同时也验证了该本体构建方法的有效性。