948 resultados para Fructose Transporter
Resumo:
OBJECTIVE: In vivo differentiation of cardiac myocytes is associated with downregulation of the glucose transporter isoform GLUT1 and upregulation of the isoform GLUT4. Adult rat cardiomyocytes in primary culture undergo spontaneous dedifferentiation, followed by spreading and partial redifferentiation, which can be influenced by growth factors. We used this model to study the signaling mechanisms modifying the expression of GLUT4 in cardiac myocytes. RESULTS: Adult rat cardiomyocytes in primary culture exhibited spontaneous upregulation of GLUT1 and downregulation of GLUT4, suggesting resumption of a fetal program of GLUT gene expression. Treatment with IGF-1 and, to a minor extent, FGF-2 resulted in restored expression of GLUT4 protein and mRNA. Activation of p38 MAPK mediated the increased expression of GLUT4 in response to IGF-1. Transient transfection experiments in neonatal cardiac myocytes confirmed that p38 MAPK could activate the glut4 promoter. Electrophoretic mobility shift assay in adult rat cardiomyocytes and transient transfection experiments in neonatal cardiac myocytes indicated that MEF2 was the main transcription factor transducing the effect of p38 MAPK activation on the glut4 promoter. CONCLUSION: Spontaneous dedifferentiation of adult rat cardiomyocytes in vitro is associated with downregulation of GLUT4, which can be reversed by treatment with IGF-1. The effect of IGF-1 is mediated by the p38 MAPK/MEF2 axis, which is a strong inducer of GLUT4 expression.
Resumo:
The ability to take up and metabolize glucose at the cellular level is a property shared by the vast majority of existing organisms. Most mammalian cells import glucose by a process of facilitative diffusion mediated by members of the Glut (SLC2A) family of membrane transport proteins. Fourteen Glut proteins are expressed in the human and they include transporters for substrates other than glucose, including fructose, myoinositol, and urate. The primary physiological substrates for at least half of the 14 Glut proteins are either uncertain or unknown. The well-established glucose transporter isoforms, Gluts 1-4, are known to have distinct regulatory and/or kinetic properties that reflect their specific roles in cellular and whole body glucose homeostasis. Separate review articles on many of the Glut proteins have recently appeared in this journal. Here, we provide a very brief summary of the known properties of the 14 Glut proteins and suggest some avenues of future investigation in this area.
Resumo:
The aim of this work was to study the distribution and cellular localization of GLUT2 in the rat brain by light and electron microscopic immunohistochemistry, whereas our ultrastructural observations will be reported in a second paper. Confirming previous results, we show that GLUT2-immunoreactive profiles are present throughout the brain, especially in the limbic areas and related nuclei, whereas they appear most concentrated in the ventral and medial regions close to the midline. Using cresyl violet counterstaining and double immunohistochemical staining for glial or neuronal markers (GFAp, CAII and NeuN), we show that two limited populations of oligodendrocytes and astrocytes cell bodies and processes are immunoreactive for GLUT2, whereas a cross-reaction with GLUT1 cannot be ruled out. In addition, we report that the nerve cell bodies clearly immunostained for GLUT2 were scarce (although numerous in the dentate gyrus granular layer in particular), whereas the periphery of numerous nerve cells appeared labeled for this transporter. The latter were clustered in the dorsal endopiriform nucleus and neighboring temporal and perirhinal cortex, in the dorsal amygdaloid region, and in the paraventricular and reuniens thalamic nuclei, whereas they were only a few in the hypothalamus. Moreover, a group of GLUT2-immunoreactive nerve cell bodies was localized in the dorsal medulla oblongata while some large multipolar nerve cell bodies peripherally labeled for GLUT2 were scattered in the caudal ventral reticular formation. This anatomical localization of GLUT2 appears characteristic and different from that reported for the neuronal transporter GLUT3 and GLUT4. Indeed, the possibility that GLUT2 may be localized in the sub-plasmalemnal region of neurones and/or in afferent nerve fibres remains to be confirmed by ultrastructural observations. Because of the neuronal localization of GLUT2, and of its distribution relatively similar to glucokinase, it may be hypothesized that this transporter is, at least partially, involved in cerebral glucose sensing.
Resumo:
The monocarboxylate transporter MCT4 is a high capacity carrier important for lactate release from highly glycolytic cells. In the central nervous system, MCT4 is predominantly expressed by astrocytes. Surprisingly, MCT4 expression in cultured astrocytes is low, suggesting that a physiological characteristic, not met in culture conditions, is necessary. Here we demonstrate that reducing oxygen concentration from 21% to either 1 or 0% restored in a concentration-dependent manner the expression of MCT4 at the mRNA and protein levels in cultured astrocytes. This effect was specific for MCT4 since the expression of MCT1, the other astrocytic monocarboxylate transporter present in vitro, was not altered in such conditions. MCT4 expression was shown to be controlled by the transcription factor hypoxia-inducible factor-1α (HIF-1α) since under low oxygen levels, transfecting astrocyte cultures with a siRNA targeting HIF-1α largely prevented MCT4 induction. Moreover, the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG) induced MCT4 expression in astrocytes cultured in presence of 21% oxygen. In parallel, glycolytic activity was enhanced by exposure to 1% oxygen as demonstrated by the increased lactate release, an effect dependent on MCT4 expression. Finally, MCT4 expression was found to be necessary for astrocyte survival when exposed for a prolonged period to 1% oxygen. These data suggest that a major determinant of astrocyte MCT4 expression in vivo is likely the oxygen tension. This could be relevant in areas of high neuronal activity and oxygen consumption, favouring astrocytic lactate supply to neurons. Moreover, it could also play an important role for neuronal recovery after an ischemic episode.
Resumo:
BACKGROUND: When fructose is ingested together with glucose (GLUFRU) during exercise, plasma lactate and exogenous carbohydrate oxidation rates are higher than with glucose alone. OBJECTIVE: The objective was to investigate to what extent GLUFRU increased lactate kinetics and oxidation rate and gluconeogenesis from lactate (GNG(L)) and from fructose (GNG(F)). DESIGN: Seven endurance-trained men performed 120 min of exercise at approximately 60% VOmax (maximal oxygen consumption) while ingesting 1.2 g glucose/min + 0.8 g of either glucose or fructose/min (GLUFRU). In 2 trials, the effects of glucose and GLUFRU on lactate and glucose kinetics were investigated with glucose and lactate tracers. In a third trial, labeled fructose was added to GLUFRU to assess fructose disposal. RESULTS: In GLUFRU, lactate appearance (120 +/- 6 mumol . kg(1) . min(1)), lactate disappearance (121 +/- 7 mumol . kg(1) . min(1)), and oxidation (127 +/- 12 mumol . kg(1) . min(1)) rates increased significantly (P < 0.001) in comparison with glucose alone (94 +/- 16, 95 +/- 16, and 97 +/- 16 mumol . kg(1) . min(1), respectively). GNG(L) was negligible in both conditions. In GLUFRU, GNG(F) and exogenous fructose oxidation increased with time and leveled off at 18.8 +/- 3.7 and 38 +/- 4 mumol . kg(1) . min(1), respectively, at 100 min. Plasma glucose appearance rate was significantly higher (P < 0.01) in GLUFRU (91 +/- 6 mumol . kg(1) . min(1)) than in glucose alone (82 +/- 9 mumol . kg(1) . min(1)). Carbohydrate oxidation rate was higher (P < 0.05) in GLUFRU. CONCLUSIONS: Fructose increased total carbohydrate oxidation, lactate production and oxidation, and GNG(F). Fructose oxidation was explained equally by fructose-derived lactate and glucose oxidation, most likely in skeletal and cardiac muscle. This trial was registered at clinicaltrials.gov as NCT01128647.
Resumo:
Hepatic and extrahepatic insulin sensitivity was assessed in six healthy humans from the insulin infusion required to maintain an 8 mmol/l glucose concentration during hyperglycemic pancreatic clamp with or without infusion of 16.7 micromol. kg(-1). min(-1) fructose. Glucose rate of disappearance (GR(d)), net endogenous glucose production (NEGP), total glucose output (TGO), and glucose cycling (GC) were measured with [6,6-(2)H(2)]- and [2-(2)H(1)]glucose. Hepatic glycogen synthesis was estimated from uridine diphosphoglucose (UDPG) kinetics as assessed with [1-(13)C]galactose and acetaminophen. Fructose infusion increased insulin requirements 2.3-fold to maintain blood glucose. Fructose infusion doubled UDPG turnover, but there was no effect on TGO, GC, NEGP, or GR(d) under hyperglycemic pancreatic clamp protocol conditions. When insulin concentrations were matched during a second hyperglycemic pancreatic clamp protocol, fructose administration was associated with an 11.1 micromol. kg(-1). min(-1) increase in TGO, a 7.8 micromol. kg(-1). min(-1) increase in NEGP, a 2.2 micromol. kg(-1). min(-1) increase in GC, and a 7.2 micromol. kg(-1). min(-1) decrease in GR(d) (P < 0. 05). These results indicate that fructose infusion induces hepatic and extrahepatic insulin resistance in humans.
Resumo:
BACKGROUND: Mutations in the sulfate transporter gene SLC26A2 (DTDST) cause a continuum of skeletal dysplasia phenotypes that includes achondrogenesis type 1B (ACG1B), atelosteogenesis type 2 (AO2), diastrophic dysplasia (DTD), and recessive multiple epiphyseal dysplasia (rMED). In 1972, de la Chapelle et al reported two siblings with a lethal skeletal dysplasia, which was denoted "neonatal osseous dysplasia" and "de la Chapelle dysplasia" (DLCD). It was suggested that DLCD might be part of the SLC26A2 spectrum of phenotypes, both because of the Finnish origin of the original family and of radiographic similarities to ACG1B and AO2. OBJECTIVE: To test the hypothesis whether SLC26A2 mutations are responsible for DLCD. METHODS: We studied the DNA from the original DLCD family and from seven Finnish DTD patients in whom we had identified only one copy of IVS1+2T>C, the common Finnish mutation. A novel SLC26A2 mutation was found in all subjects, inserted by site-directed mutagenesis in a vector harbouring the SLC26A2 cDNA, and expressed in sulfate transport deficient Chinese hamster ovary (CHO) cells to measure sulfate uptake activity. RESULTS: We identified a hitherto undescribed SLC26A2 mutation, T512K, homozygous in the affected subjects and heterozygous in both parents and in the unaffected sister. T512K was then identified as second pathogenic allele in the seven Finnish DTD subjects. Expression studies confirmed pathogenicity. CONCLUSIONS: DLCD is indeed allelic to the other SLC26A2 disorders. T512K is a second rare "Finnish" mutation that results in DLCD at homozygosity and in DTD when compounded with the milder, common Finnish mutation.
Resumo:
The physiological significance of the presence of GLUT2 at the food-facing pole of intestinal cells is addressed by a study of fructose absorption in GLUT2-null and control mice submitted to different sugar diets. Confocal microscopy localization, protein and mRNA abundance, as well as tissue and membrane vesicle uptakes of fructose were assayed. GLUT2 was located in the basolateral membrane of mice fed a meal devoid of sugar or containing complex carbohydrates. In addition, the ingestion of a simple sugar meal promoted the massive recruitment of GLUT2 to the food-facing membrane. Fructose uptake in brush-border membrane vesicles from GLUT2-null mice was half that of wild-type mice and was similar to the cytochalasin B-insensitive component, i.e. GLUT5-mediated uptake. A 5 day consumption of sugar-rich diets increased fructose uptake fivefold in wild-type tissue rings when it only doubled in GLUT2-null tissue. GLUT5 was estimated to contribute to 100 % of total uptake in wild-type mice fed low-sugar diets, falling to 60 and 40 % with glucose and fructose diets respectively; the complement was ensured by GLUT2 activity. The results indicate that basal sugar uptake is mediated by the resident food-facing SGLT1 and GLUT5 transporters, whose mRNA abundances double in long-term dietary adaptation. We also observe that a large improvement of intestinal absorption is promoted by the transient recruitment of food-facing GLUT2, induced by the ingestion of a simple-sugar meal. Thus, GLUT2 and GLUT5 could exert complementary roles in adapting the absorption capacity of the intestine to occasional or repeated loads of dietary sugars.
Resumo:
Resting metabolic rate was measured in 10 healthy volunteers (25 yr, 73 kg, 182 cm) for 1 h before and 4 h during intravenous (iv) fructose administration (20% at 50 mumol.kg-1.min-1) with (+P) or without (-P) propranolol (100 micrograms/kg, 1 microgram.kg-1.min-1) during the last 2 h. Some subjects were studied a further 2 h with fructose infusion and +P or -P in hyperinsulinemic (2.9 pmol.kg-1.min-1) euglycemic conditions. Glucose turnover ([3-3H]glucose, 20 muCi bolus and 0.2 muCi/min) was calculated over 30 min at 0, 2, 4, and 6 h. The thermic effect of iv fructose was approximately 7.5% and decreased to 4.9 +/- 0.4% (P less than 0.01) +P. During the euglycemic clamp the thermic effect was 6.2 +/- 0.9% (-P) and 5.3 +/- 0.9% (+P). Hepatic glucose production (HGP) was 11.7 mumol.kg-1.min-1 (0 h) and did not change after 2 h iv fructose (11.8 +/- 0.5 and 9.8 +/- 0.6 mumol.kg-1.min-1 -P and +P, respectively) but increased to 13.8 +/- 0.9 (-P) and 12.9 +/- 0.8 mumol.kg-1.min-1 (+P) (P less than 0.01) after 4 h. HGP was suppressed to varying degrees during the euglycemic clamp. It is concluded that 1) the greater thermic effect of fructose compared with glucose is probably due to continued gluconeogenesis (which is suppressed by glucose or glucose-insulin) and the energy cost of fructose metabolism to glucose in the liver. 2) There is a sympathetically mediated component to the thermic effect of fructose (approximately 30%) that is not mediated by elevated plasma insulin concentrations similar to those observed with iv glucose.
Resumo:
The urate transporter, GLUT9, is responsible for the basolateral transport of urate in the proximal tubule of human kidneys and in the placenta, playing a central role in uric acid homeostasis. GLUT9 shares the least homology with other members of the glucose transporter family, especially with the glucose transporting members GLUT1-4 and is the only member of the GLUT family to transport urate. The recently published high-resolution structure of XylE, a bacterial D-xylose transporting homologue, yields new insights into the structural foundation of this GLUT family of proteins. While this represents a huge milestone, it is unclear if human GLUT9 can benefit from this advancement through subsequent structural based targeting and mutagenesis. Little progress has been made toward understanding the mechanism of GLUT9 since its discovery in 2000. Before work can begin on resolving the mechanisms of urate transport we must determine methods to express, purify and analyze hGLUT9 using a model system adept in expressing human membrane proteins. Here, we describe the surface expression, purification and isolation of monomeric protein, and functional analysis of recombinant hGLUT9 using the Xenopus laevis oocyte system. In addition, we generated a new homology-based high-resolution model of hGLUT9 from the XylE crystal structure and utilized our purified protein to generate a low-resolution single particle reconstruction. Interestingly, we demonstrate that the functional protein extracted from the Xenopus system fits well with the homology-based model allowing us to generate the predicted urate-binding pocket and pave a path for subsequent mutagenesis and structure-function studies.
Expression cloning of a rat hepatic reduced glutathione transporter with canalicular characteristics
Resumo:
Using the Xenopus oocyte expression system, we have previously identified an approximately 4-kb fraction of mRNA from rat liver that expresses sulfobromophthalein-glutathione (BSP-GSH)-insensitive reduced glutathione (GSH) transport (Fernandez-Checa, J., J. R. Yi, C. Garcia-Ruiz, Z. Knezic, S. Tahara, and N. Kaplowitz. 1993. J. Biol. Chem. 268:2324-2328). Starting with a cDNA library constructed from this fraction, we have now isolated a single clone that expresses GSH transporter activity. The cDNA for the rat canalicular GSH transporter (RcGshT) is 4.05 kb with an open reading frame of 2,505 nucleotides encoding for a polypeptide of 835 amino acids (95,785 daltons). No identifiable homologies were found in searching various databases. An approximately 96-kD protein is generated in in vitro translation of cRNA for RcGshT. Northern blot analysis reveals a single 4-kb transcript in liver, kidney, intestine, lung, and brain. The abundance of mRNA for RcGshT in rat liver increased 3, 6, and 12 h after a single dose of phenobarbital. Insensitivity to BSP-GSH and induction by phenobarbital, unique characteristics of canalicular GSH secretion, suggest that RcGshT encodes for the canalicular GSH transporter.
Resumo:
When expressed in Xenopus oocytes, GLUT1, 2 and 4 transport glucosamine with V(max) values that are three- to four-fold lower than for glucose. The K(m)s for glucosamine and glucose of GLUT1 and GLUT4 were similar. In contrast, GLUT2 had a much higher apparent affinity for glucosamine than for glucose (K(m)=0.8+/-0.1 mM vs. approximately 17-20 mM). Glucosamine transport by GLUT2 was confirmed in mammalian cells and, using hepatocytes from control or GLUT2-null mice, HgCl(2)-inhibitable glucosamine uptake by liver was shown to be exclusively through GLUT2. These data have implications for glucosamine effects on impaired glucose metabolism and for structure-function studies of transporter sugar binding sites.