975 resultados para Frequency Domain Spectroscopy
Resumo:
Dissertação de natureza científica realizada para a obtenção do grau de Mestre em Engenharia de redes de comunicação e Multimédia
Resumo:
Comunication in Internationa Conference with Peer Review First International Congress on Cardiovasular Technologies - CARDIOTECHNIX, Vilamoura, Portugal, 2013
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório de Engenharia Civil (LNEC) para obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação entre o ISEL e o LNEC
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de cooperação ente o ISEL e o LNEC
Resumo:
This paper describes the use of integer and fractional electrical elements, for modelling two electrochemical systems. A first type of system consists of botanical elements and a second type is implemented by electrolyte processes with fractal electrodes. Experimental results are analyzed in the frequency domain, and the pros and cons of adopting fractional-order electrical components for modelling these systems are compared.
Resumo:
Dissertação de natureza Científica para obtenção do grau de Mestre em Engenharia Civil
Resumo:
Trabalho Final de Mestrado elaborado no Laboratório Nacional de Engenharia Civil (LNEC) para a obtenção do grau de Mestre em Engenharia Civil pelo Instituto Superior de Engenharia de Lisboa no âmbito do protocolo de Cooperação entre o ISEL e o LNEC
Resumo:
Fractional order modeling of biological systems has received significant interest in the research community. Since the fractal geometry is characterized by a recurrent structure, the self-similar branching arrangement of the airways makes the respiratory system an ideal candidate for the application of fractional calculus theory. To demonstrate the link between the recurrence of the respiratory tree and the appearance of a fractional-order model, we develop an anatomically consistent representation of the respiratory system. This model is capable of simulating the mechanical properties of the lungs and we compare the model output with in vivo measurements of the respiratory input impedance collected in 20 healthy subjects. This paper provides further proof of the underlying fractal geometry of the human lungs, and the consequent appearance of constant-phase behavior in the total respiratory impedance.
Resumo:
In this paper we present results about the functioning of a multilayered a-SiC:H heterostructure as a device for wavelength-division demultiplexing of optical signals. The device is composed of two stacked p-i-n photodiodes, both optimized for the selective collection of photogenerated carriers. Band gap engineering was used to adjust the photogeneration and recombination rates profiles of the intrinsic absorber regions of each photodiode to short and long wavelength absorption and carrier collection in the visible spectrum. The photocurrent signal using different input optical channels was analyzed at reverse and forward bias and under steady state illumination. This photocurrent is used as an input for a demux algorithm based on the voltage controlled sensitivity of the device. The device functioning is explained with results obtained by numerical simulation of the device, which permit an insight to the internal electric configuration of the double heterojunction.These results address the explanation of the device functioning in the frequency domain to a wavelength tunable photocapacitance due to the accumulation of space charge localized at the internal junction. The existence of a direct relation between the experimentally observed capacitive effects of the double diode and the quality of the semiconductor materials used to form the internal junction is highlighted.
Resumo:
Departamento de Engenharia Electrotécnica e de Computadores Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Mecânica
Resumo:
Sandwich structures with soft cores are widely used in applications where a high bending stiffness is required without compromising the global weight of the structure, as well as in situations where good thermal and damping properties are important parameters to observe. As equivalent single layer approaches are not the more adequate to describe realistically the kinematics and the stresses distributions as well as the dynamic behaviour of this type of sandwiches, where shear deformations and the extensibility of the core can be very significant, layerwise models may provide better solutions. Additionally and in connection with this multilayer approach, the selection of different shear deformation theories according to the nature of the material that constitutes the core and the outer skins can predict more accurately the sandwich behaviour. In the present work the authors consider the use of different shear deformation theories to formulate different layerwise models, implemented through kriging-based finite elements. The viscoelastic material behaviour, associated to the sandwich core, is modelled using the complex approach and the dynamic problem is solved in the frequency domain. The outer elastic layers considered in this work may also be made from different nanocomposites. The performance of the models developed is illustrated through a set of test cases. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A new algorithm for the velocity vector estimation of moving ships using Single Look Complex (SLC) SAR data in strip map acquisition mode is proposed. The algorithm exploits both amplitude and phase information of the Doppler decompressed data spectrum, with the aim to estimate both the azimuth antenna pattern and the backscattering coefficient as function of the look angle. The antenna pattern estimation provides information about the target velocity; the backscattering coefficient can be used for vessel classification. The range velocity is retrieved in the slow time frequency domain by estimating the antenna pattern effects induced by the target motion, while the azimuth velocity is calculated by the estimated range velocity and the ship orientation. Finally, the algorithm is tested on simulated SAR SLC data.
Resumo:
Biometric recognition is emerging has an alternative solution for applications where the privacy of the information is crucial. This paper presents an embedded biometric recognition system based on the Electrocardiographic signals (ECG) for individual identification and authentication. The proposed system implements a real-time state-of-the-art recognition algorithm, which extracts information from the frequency domain. The system is based on a ARM Cortex 4. Preliminary results show that embedded platforms are a promising path for the implementation of ECG-based applications in real-world scenario.