894 resultados para Free radical scavenging activity


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein we describe our application of the O-directed free radical hydrostannation of disubstituted alkyl-acetylenes (with Ph3SnH and Et3B) to the (+)-pumiliotoxin B total synthesis problem. Specifically, we report on the use of this method in the synthesis of the Overman alkyne 8, and thereby demonstrate the great utility of this process in a complex natural product total synthesis setting for the very first time. We also report here on a new, stereocontrolled, and highly practical enantioselective pathway to Overman's pyrrolidine epoxide partner 9 for 8, which overcomes the previous requirement for use of preparative HPLC to separate the 1:1 mixture of diastereomeric epoxides that was obtained in the original synthesis of 9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

One of the important temporal stages of radiation action in cellular systems is the chemical phase, where oxygen fixation reactions compete with chemical repair reactions involving reducing agents such as GSH. Using the gas explosion technique it is possible to follow the kinetics of these fast (> 1 ms) reactions in intact cells. We have compared the chemical repair kinetics of the oxygen-dependent free radical precursors leading to DNA single-strand and double-strand breaks, measured using filter elution techniques, with those leading to cell killing in V79 cells. The chemical repair rates for DNA dsb (670s-1 at pH 7.2 and 380s-1 at pH 9.6) and cell killing (530s-1) were similar. This is in agreement with the important role of DNA dsb in radiation induced cell lethality. The rate for DNA ssb precursors was significantly slower (210s-1). The difference in rate between DNA ssb and dsb precursors may be explained on the basis of a dsb free radical precursor consisting of a paired radical, one radical on each strand. The instantaneous probability of one or other of these radicals being chemically repaired and not proceeding to form a dsb will be twice that of a ssb radical precursor. This agrees well with the concept of locally multiply damaged sites (LMDS) produced from clusters of ionizations in DNA (Ward 1985).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese hamster V79 fibroblasts were irradiated in the gas explosion apparatus and the chemical repair rates of the oxygen-dependent free radical precursors of DNA double-strand breaks (dsb) and lethal lesions measured using filter elution (pH 9.6) and a clonogenic assay. Depletion of cellular GSH levels, from 4.16 fmol/cell to 0.05 fmol/cell, by treatment with buthionine sulphoximine (50 mumol dm-3; 18 h), led to sensitization as regards DNA dsb induction and cell killing. This was evident at all time settings but was particularly pronounced when the oxygen shot was given 1 ms after the irradiation pulse. A detailed analysis of the chemical repair kinetics showed that depletion of GSH led to a reduction in the first-order rate constant for dsb precursors from 385 s-1 to 144 s-1, and for lethal lesion precursors from 533 s-1 to 165 s-1. This is generally consistent with the role of GSH in the repair-fixation model of radiation damage at the critical DNA lesions. However, the reduction in chemical repair rate was not proportional to the severe thiol depletion (down to almost-equal-to 1% for GSH) and a residual repair capacity remained (almost-equal-to 30%). This was found not to be due to compartmentalization of residual GSH in the nucleus, as the repair rate for dsb precursors in isolated nuclei, washed virtually free of GSH, was identical to that found in GSH-depleted cells (144 s-1), also the OER remained substantially above unity. This suggests that other reducing agents may have a role to play in the chemical repair of oxygen-dependent damage. One possible candidate is the significant level of protein sulphydryls present in isolated nuclei.