981 resultados para Fr-IR spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solubilization of single walled carbon nanotubes (SWNTs) in aqueous milieu by self assembly of bivalent glycolipids is described. Thorough analysis of the resulting composites involving Vis/near-IR spectroscopy, surface plasmon resonance, confocal Raman and atomic force microscopy reveals that glycolipid-coated SWNTs possess specific molecular recognition properties towards lectins.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Thin films of ZrO2 have been deposited by ALD on Si(100) and SIMOX using two different metalorganic complexes of Zr as precursors. These films are characterized by X-ray diffraction, transmission and scanning electron microscopies, infrared spectroscopy, and electrical measurements. These show that amorphous ZrO2 films of high dielectric quality may be grown on Si(100) starting about 400degreesC. As the growth temperature is raised, the films become crystalline, the phase formed and the microstructure depending on precursor molecular structure. The phase of ZrO2 formed depends also on the relative duration of the precursor and oxygen pulses. XPS and IR spectroscopy show that films grown at low temperatures contain chemically unbound carbon, its extent depending on the precursor. C-V measurements show that films grown on Si(100) have low interface state density, low leakage current, a hysteresis width of only 10-250 mV and a dielectric constant of similar to16-25.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Histone deacetylase inhibitors (HDIs) have attracted considerable attention as potential drug molecules in tumour biology. In order to optimise chemotherapy, it is important to understand the mechanisms of regulation of histone deacetylase (HDAC) enzymes and modifications brought by various HDIs. In the present study, we have employed Fourier transform infrared microspectroscopy (FT-IRMS) to evaluate modifications in cellular macromolecules subsequent to treatment with various HDIs. In addition to CH3 (methyl) stretching bands at 2872 and 2960 cm1, which arises due to acetylation, we also found major changes in bands at 2851 and 2922 cm1, which originates from stretching vibrations of CH2 (methylene) groups, in valproic acid treated cells. We further demonstrate that the changes in CH2 stretching are concentration-dependent and also induced by several other HDIs. Recently, HDIs have been shown to induce propionylation besides acetylation [1]. Since propionylation involves CH2 groups, we hypothesized that CH2 vibrational frequency changes seen in HDI treated cells could arise due to propionylation. As verification, pre-treatment of cells with propionyl CoA synthetase inhibitor resulted in loss of CH2 vibrational changes in histones, purified from valproic acid treated cells. This was further proved by western blot using propionyl-lysine specific antibody. Thus we demonstrate for the first time that propionylation could be monitored by studying CH2 stretching using IR spectroscopy and further provide a platform for monitoring HDI induced multiple changes in cells. (C) 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A steel ball was slid on a steel flat lubricated by molybdenum disulfide (MoS2) particles suspended in hexadecane oil at 150 degrees C. The friction data is compared with that obtained when the ball was slid on the flat sprayed apriori with nominally dry MoS2 particles. The friction in the dry experiment was found to increase with temperature while the friction in wet condition was found to decrease with increasing temperature. Micro-Raman and Fourier transform IR spectroscopy are used to explore the roles of environmental moisture and chemical degradation of oil on the formation of antifriction film on the steel substrate.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Six new copper metal complexes with formulas Cu(H2O)(2,2'-bpy) (H2L)](2) center dot H4L center dot 4 H2O (1), {Cu(H2O)(2,2'-bpy)-(H3L)}(2)(H2L)]center dot 2H(2)O (2), Cu(H2O)(1,10-phen)(H2L)](2)center dot 6H(2)O (3), Cu(2,2'-bpy)(H2L)](n)center dot nH(2)O (4), Cu(1,10-phen)(H2L)](n)center dot 3nH(2)O (5), and {Cu(2,2'-bpy)(MoO3)}(2)(L)](n)center dot 2nH(2)O (6) have been synthesized starting from p-xylylenediphosphonic acid (H4L) and 2,2'-bipyridine (2,2'-bpy) or 1,10-phenanthroline (1,10-phen) as secondary linkers and characterized by single crystal X-ray diffraction analysis, IR spectroscopy, and thermogravimetric (TG) analysis. All the complexes were synthesized by hydrothermal methods. A dinuclear motif (Cu-dimer) bridged by phosphonic acid represents a new class of simple building unit (SBU) in the construction of coordination architectures in metal phosphonate chemistry. The initial pH of the reaction mixture induced by the secondary linker plays an important role in the formation of the molecular phosphonates 1, 2, and 3. Temperature dependent hydrothermal synthesis of the compounds 1, 2, and 3 reveals the mechanism of the self assembly of the compounds based on the solubility of the phosphonic acid H4L. Two-dimensional coordination polymers 4, 5, and 6, which are formed by increasing the pH of the reaction mixture, comprise Cu-dimers as nodes, organic (H2L) and inorganic (Mo4O12) ligands as linkers. The void space-areas, created by the (4,4) connected nets in compounds 4 and 5, are occupied by lattice water molecules. Thus compounds 4 and 5 have the potential to accommodate guest species/molecules. Variable temperature magnetic studies of the compounds 3, 4, 5, and 6 reveal the antiferromagnetic interactions between the two Cu(II) ions in the eight membered ring, observed in their crystal structures. A density functional theory (DFT) calculation correlates the conformation of the Cu-dimer ring with the magnitude of the exchange parameter based on the torsion angle of the conformation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Supported catalysts containing 15 wt.% of molybdenum have been prepared by the incipient wetness impregnation method. CaO, MgO, Al2O3, Zr(OH)4 and Al(OH)3 have been used as supports for the preparation of supported Mo catalysts. Characterisation of all the materials prepared has been carried out through BET surface area measurement, X-ray diffractometry and FT-IR spectroscopy. Catalytic activity measurements have been carried out with reference to structure-sensitive benzyl alcohol conversion in the liquid phase. The percentage conversion of benzyl alcohol to benzaldehyde and toluene varied over a large range depending on the support used for the preparation of catalysts, indicating the importance of the support on catalytic activity of Mo catalysts. Al(OH)3 has been found to be the best support for molybdenum among all the supports used. Support–metal interaction (SMI) has been found to play an important role in determining the catalytic activity of supported catalysts.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper presents the chemical synthesis of 3-Aminophenylboronic acid (APBA) modified graphene oxide (GO) and its application to the electrochemical detection of glycated hemoglobin (GHb). The compound (GO-APBA) was synthesized by forming an amide linkage between the amino group (-NH2) of APBA and the carboxylic group (-COOH) of GO. The compound was characterized using IR spectroscopy. Detection of GHb was carried out using Electrochemical Impedance Spectroscopic (EIS) measurements with GO-APBA modified glassy carbon electrode as the working electrode.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A Cambridge Structural Database (CSD) analysis on halogen center dot center dot center dot halogen contacts (X...X) in organic crystals has been carried out to review the classification criteria for type I, type II, and quasi type I/II halogen interactions. Trends observed in previous CSD analyses of the phenomenon are reinforced in the present study. The manner in which these interactions are manifested in cocrystals of 4-bromobenzamide and dicarboxylic acid is examined. The design strategy for these cocrystals uses synthon theory and follows from an understanding of the crystal structures of gamma-hydroquinone and a previously studied set of 4-hydroxybenzamide dicarboxylic acid cocrystals, making use of Br/OH isostructurality. All cocrystals are obtained by clean insertion of dicarboxylic acids between 4-bromobenzamide molecules. The strategy is deliberate and the prediction of synthons done well in advance, as evidenced from the robustness of the acid-amide heterosynthons in all nine crystal structures, with no aberrant structures in the crystallization experiments. Formation of the acid-amide synthon in these cocrystals is identified with IR spectroscopy. The packing in these cocrystals can be distinguished in terms of whether the Br...Br interactions are type I or II. Eight sets of dimorphs were retrieved from the CSD, wherein the basis of the polymorphism is that one crystal has a type I Br...Br interaction, while the other has a type II interaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nanocomposite solid polymer electrolytes (NCSPEs) with conducting species other than Li ions are being investigated for solid-state battery applications. Pristine solid polymer electrolytes (SPEs) do not show ionic conductivity suitable for batteries. Addition of inert fillers to SPEs is known to enhance the ionic conductivity. In this paper, we present the role of silica nanoparticles in enhancing the ionic conductivity in NCSPEs with sodium as conducting species. Sodium bromide is complexed with the host polyethylene glycol polymer by solution cast method and silica nanoparticles (SiO2, average particle size 7 nm) are incorporated into the complex in small amounts. The composites are characterized by powder XRD and IR spectroscopy. Conductivity measurements are undertaken as a function of concentration of salt and also as a function of temperature using impedance spectroscopy. Addition of silica nanoparticles shows an enhancement in conductivity by 1-2 orders of magnitude. The results are discussed in terms of interaction of nanoparticles with the nonconducting anions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrogen bonding is the most important non-covalent interaction utilised in building supramolecular assemblies and is preferred often as a means of construction of molecular, oligomeric as well as polymeric materials that show liquid crystalline properties. In this work, a pyridine based nematogenic acceptor has been synthesized and mixed with non-mesogenic 4-methoxy benzoic acid to get a hydrogen bonded mesogen. The existence of hydrogen bonding between the pyridyl unit and the carboxylic acid was established using FT-IR spectroscopy from the observation of characteristic stretching vibrations of unionized type at 2425 and 1927 cm(-1). The mesogenic acceptor and the complex have been investigated using C-13 NMR in solution, solid and liquid crystalline states. Together with the 2D separated local field NMR experiments, the studies confirm the molecular structure in the mesophase and yield the local orientational order parameters. It is observed that the insertion of 4-methoxy benzoic acid not only enhances the mesophase stability but also induces a smectic phase due to an increase in the core length of the hydrogen bonded mesogen.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ceria, because of its excellent redox behavior and oxygen storage capacity, is used as a catalyst for several technologically important reactions. In the present study, different morphologies of nano-CeO2 (rods, cubes, octahedra) were synthesized using the hydrothermal route. An ultrafast microwave-assisted method was used to efficiently attach Pt particles to the CeO2 polyhedra. These nanohybrids were tested as catalysts for the CO oxidation reaction. The CeO2/Pt catalyst with nanorods as the support was found to be the most active catalyst. XPS and IR spectroscopy measurements were carried out in order to obtain a mechanistic understanding and it was observed that the adsorbed carbonates with lower stability on the reactive planes of nanorods and cubes are the major contributor to this enhanced catalytic activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the synthesis of Pr6O11 microspheres self-assembled from ultra-small nanocrystals formed by the microwave irradiation of a solution of a salt of Pr in ethylene glycol (EG). The as-prepared product consists of microspheres measuring 200 to 500 nm in diameter and made of <5 nm nano-crystallites. The surface of these microspheres/nanocrystals is covered/capped with an organic layer of ethylene glycol as shown by TEM analysis and confirmed by IR spectroscopy measurements. The as-prepared product shows blue-green emission under excitation, which changes to orange-red when the product is annealed in air at 600 degrees C for 2 h. This change in luminescence behaviour can be attributed to presence of ethylene glycol layer in the as-prepared product. The samples were characterized by X-ray powder diffraction (XRD), field emission scanning electron microscopy (FE-SEM), IR Spectroscopy (IR), transmission electron microscopy (TEM), and thermogravimetric analysis (TGA). (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

An anthracene-containing poly(arylene-ethynylene)-alt-poly(arylene-vinylene) (PAE-PAV) of general constitutional unit (PhCCAnthrCCPhCHCHAnthrCHCH)(n) bearing two 2-ethylhexyloxy solubilizing side chains on each phenylene (Ph) unit has been synthesized and characterized. The basic electrochemical characterization was done, showing the existence of two non-reversible oxidation and one reversible reduction peaks. The optical properties, the real and imaginary part of the dielectric function, were probed using spectroscopic ellipsometry (SE). The vibrational structure of the undoped/doped polymer was investigated using Fourier transformed infrared spectroscopy. A strong change in the polaronic absorption was observed during the doping, which after modeling revealed the existence of two separated transitions. The optical changes upon doping were additionally recorded using the SE technique. Similar to the results from FT-IR spectroscopy, two new in-the-gap absorptions were found. Moreover, the electrical conductivity as well as the mobility of positive carriers were measured. In the undoped state, the conductivity of the polymer was found to be below the detection limit (

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Hydrochlorothiazide (HCT), C7H8ClN3O4S2, is a diuretic BCS (Biopharmaceutics Classification System) class IV drug which has primary and secondary sulfonamide groups. To modify the aqueous solubility of the drug, co-crystals with biologically safe co-formers were screened. Multi-component molecular crystals of HCT were prepared with nicotinic acid, nicotinamide, succinamide, p-aminobenzoic acid, resorcinol and pyrogallol using liquid-assisted grinding. The co-crystals were characterized by FT-IR spectroscopy, powder X-ray diffraction (PXRD) and differential scanning calorimetry. Single crystal structures were obtained for four of them. The N-H center dot center dot center dot O sulfonamide catemer synthons found in the stable polymorph of pure HCT are replaced in the co-crystals by drug-co-former heterosynthons. Isostructural co-crystals with nicotinic acid and nicotinamide are devoid of the common sulfonamide dimer/catemer synthons. Solubility and stability experiments were carried out for the co-crystals in water (neutral pH) under ambient conditions. Among the six binary systems, the co-crystal with p-aminobenzoic acid showed a sixfold increase in solubility compared with pure HCT, and stability up to 24 h in an aqueous medium. The co-crystals with nicotinamide, resorcinol and pyrogallol showed only a 1.5-2-fold increase in solubility and transformed to HCT within 1 h of the dissolution experiment. An inverse correlation is observed between the melting points of the co-crystals and their solubilities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the present study a versatile and efficient adsorbent with high adsorption capacity for adsorption of Congo red dye in aqueous solution at ambient temperature without adjusting any pH is presented over the Ag modified calcium hydroxyapatite (CaHAp). CaHAp and Ag-doped CaHAp materials were synthesized using facile aqueous precipitation method. The physico-chemical properties of the materials were determined by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, Transmission electron microscopy (TEM), UV-Visible spectroscopy, N-2 physisorption and acidity was determined by n-butylamine titration and pyridine adsorption methods. XRD analysis confirmed all adsorbents exhibit hexagonal CaHAp structure with P6(3)/m space group. TEM analysis confirms the rod like morphology of the adsorbents and the average length of the rods were in the range of 40-45 nm. Pyridine adsorption results indicate increase in number of Lewis acid sites with Ag doping in CaHAp. Adsorption capacity of CaHAp was found increased with Ag content in the adsorbents. Ag (10): CaHAp adsorbent showed superior adsorption performance among all the adsorbents for various concentrations of Congo red (CR) dye in aqueous solutions. The amount of CR dye adsorbed on Ag (10): CaHAp was found to be 49.89-267.81 mg g(-1) for 50-300 ppm in aqueous solution. A good correlation between adsorption capacity and acidity of the adsorbents was observed. The adsorption kinetic data of adsorbents fitted well with pseudo second-order kinetic model with correlation coefficients ranged from 0.998 to 0.999. The equilibrium adsorption data was found to best fit to the Langmuir adsorption isotherm model. (C) 2015 Elsevier Inc. All rights reserved.