968 resultados para Fourier modal method


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural Health Monitoring (SHM) schemes are useful for proper management of the performance of structures and for preventing their catastrophic failures. Vibration based SHM schemes has gained popularity during the past two decades resulting in significant research. It is hence evitable that future SHM schemes will include robust and automated vibration based damage assessment techniques (VBDAT) to detect, localize and quantify damage. In this context, the Damage Index (DI) method which is classified as non-model or output based VBDAT, has the ability to automate the damage assessment process without using a computer or numerical model along with actual measurements. Although damage assessment using DI methods have been able to achieve reasonable success for structures made of homogeneous materials such as steel, the same success level has not been reported with respect to Reinforced Concrete (RC) structures. The complexity of flexural cracks is claimed to be the main reason to hinder the applicability of existing DI methods in RC structures. Past research also indicates that use of a constant baseline throughout the damage assessment process undermines the potential of the Modal Strain Energy based Damage Index (MSEDI). To address this situation, this paper presents a novel method that has been developed as part of a comprehensive research project carried out at Queensland University of Technology, Brisbane, Australia. This novel process, referred to as the baseline updating method, continuously updates the baseline and systematically tracks both crack formation and propagation with the ability to automate the damage assessment process using output only data. The proposed method is illustrated through examples and the results demonstrate the capability of the method to achieve the desired outcomes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many researchers in the field of civil structural health monitoring have developed and tested their methods on simple to moderately complex laboratory structures such as beams, plates, frames, and trusses. Field work has also been conducted by many researchers and practitioners on more complex operating bridges. Most laboratory structures do not adequately replicate the complexity of truss bridges. This paper presents some preliminary results of experimental modal testing and analysis of the bridge model presented in the companion paper, using the peak picking method, and compares these results with those of a simple numerical model of the structure. Three dominant modes of vibration were experimentally identified under 15 Hz. The mode shapes and order of the modes matched those of the numerical model; however, the frequencies did not match.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose To develop a signal processing paradigm for extracting ERG responses to temporal sinusoidal modulation with contrasts ranging from below perceptual threshold to suprathreshold contrasts. To estimate the magnitude of intrinsic noise in ERG signals at different stimulus contrasts. Methods Photopic test stimuli were generated using a 4-primary Maxwellian view optical system. The 4-primary lights were sinusoidally temporally modulated in-phase (36 Hz; 2.5 - 50% Michelson). The stimuli were presented in 1 s epochs separated by a 1 ms blank interval and repeated 160 times (160.16 s duration) during the recording of the continuous flicker ERG from the right eye using DTL fiber electrodes. After artefact rejection, the ERG signal was extracted using Fourier methods in each of the 1 s epochs where a stimulus was presented. The signal processing allows for computation of the intrinsic noise distribution in addition to the signal to noise (SNR) ratio. Results We provide the initial report that the ERG intrinsic noise distribution is independent of stimulus contrast whereas SNR decreases linearly with decreasing contrast until the noise limit at ~2.5%. The 1ms blank intervals between epochs de-correlated the ERG signal at the line frequency (50 Hz) and thus increased the SNR of the averaged response. We confirm that response amplitude increases linearly with stimulus contrast. The phase response shows a shallow positive relationship with stimulus contrast. Conclusions This new technique will enable recording of intrinsic noise in ERG signals above and below perceptual visual threshold and is suitable for measurement of continuous rod and cone ERGs across a range of temporal frequencies, and post-receptoral processing in the primary retinogeniculate pathways at low stimulus contrasts. The intrinsic noise distribution may have application as a biomarker for detecting changes in disease progression or treatment efficacy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fuzzy logic system (FLS) with a new sliding window defuzzifier is proposed for structural damage detection using modal curvatures. Changes in the modal curvatures due to damage are fuzzified using Gaussian fuzzy sets and mapped to damage location and size using the FLS. The first four modal vectors obtained from finite element simulations of a cantilever beam are used for identifying the location and size of damage. Parametric studies show that modal curvatures can be used to accurately locate the damage; however, quantifying the size of damage is difficult. Tests with noisy simulated data show that the method detects damage very accurately at different noise levels and when some modal data are missing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Estimation of secondary structure in polypeptides is important for studying their structure, folding and dynamics. In NMR spectroscopy, such information is generally obtained after sequence specific resonance assignments are completed. We present here a new methodology for assignment of secondary structure type to spin systems in proteins directly from NMR spectra, without prior knowledge of resonance assignments. The methodology, named Combination of Shifts for Secondary Structure Identification in Proteins (CSSI-PRO), involves detection of specific linear combination of backbone H-1(alpha) and C-13' chemical shifts in a two-dimensional (2D) NMR experiment based on G-matrix Fourier transform (GFT) NMR spectroscopy. Such linear combinations of shifts facilitate editing of residues belonging to alpha-helical/beta-strand regions into distinct spectral regions nearly independent of the amino acid type, thereby allowing the estimation of overall secondary structure content of the protein. Comparison of the predicted secondary structure content with those estimated based on their respective 3D structures and/or the method of Chemical Shift Index for 237 proteins gives a correlation of more than 90% and an overall rmsd of 7.0%, which is comparable to other biophysical techniques used for structural characterization of proteins. Taken together, this methodology has a wide range of applications in NMR spectroscopy such as rapid protein structure determination, monitoring conformational changes in protein-folding/ligand-binding studies and automated resonance assignment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The breakdown of the usual method of Fourier transforms in the problem of an external line crack in a thin infinite elastic plate is discovered and the correct solution of this problem is derived using the concept of a generalised Fourier transform of a type discussed first by Golecki [1] in connection with Flamant's problem.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Measurement of individual emission sources (e.g., animals or pen manure) within intensive livestock enterprises is necessary to test emission calculation protocols and to identify targets for decreased emissions. In this study, a vented, fabric-covered large chamber (4.5 × 4.5 m, 1.5 m high; encompassing greater spatial variability than a smaller chamber) in combination with on-line analysis (nitrous oxide [N2O] and methane [CH4] via Fourier Transform Infrared Spectroscopy; 1 analysis min-1) was tested as a means to isolate and measure emissions from beef feedlot pen manure sources. An exponential model relating chamber concentrations to ambient gas concentrations, air exchange (e.g., due to poor sealing with the surface; model linear when ≈ 0 m3 s-1), and chamber dimensions allowed data to be fitted with high confidence. Alternating manure source emission measurements using the large-chamber and the backward Lagrangian stochastic (bLS) technique (5-mo period; bLS validated via tracer gas release, recovery 94-104%) produced comparable N2O and CH4 emission values (no significant difference at P < 0.05). Greater precision of individual measurements was achieved via the large chamber than for the bLS (mean ± standard error of variance components: bLS half-hour measurements, 99.5 ± 325 mg CH4 s-1 and 9.26 ± 20.6 mg N2O s-1; large-chamber measurements, 99.6 ± 64.2 mg CH4 s-1 and 8.18 ± 0.3 mg N2O s-1). The large-chamber design is suitable for measurement of emissions from manure on pen surfaces, isolating these emissions from surrounding emission sources, including enteric emissions. © © American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the solution combustion synthesis and characterization of La1-xKxMnO3 (0.0 <= x <= 0.25) perovskite phases, which is a low temperature initiated, rapid route to prepare metal oxides. As-synthesized compounds are amorphous in nature; crystallinity was observed on heating at 800 degrees C for 5 min. Structural parameters were determined by the Rietveld refinement method using powder XRD data. Parent LaMnO3 compound crystallizes in the orthorhombic structure (space group Pbnm, No. 62). Potassium substituted compounds were crystallized with rhombohedral symmetry (space group R-3c, No. 167). The ratio of the Mn3+/Mn4+ was determined by the iodometric titration. The Fourier transform infrared spectrum (FTIR) shows two absorption bands for Mn-O stretching vibration (v, mode), Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions, x = 0.0, 0.05 and 0-10. Four-probe electrical resistivity measurements reveal a composition controlled metal to insulator transition (TM-1), the maximum TM-1 was observed for the composition La0.85K0.15MnO3 at 287 K. Room temperature vibrating sample magnetometer data indicate that for the composition up to x = 0-10, the compounds are paramagnetic whereas composition with x = 0.15, 0.20 and 0.25 show magnetic moments of 27, 29 and 30 emu/g, respectively.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have evaluated techniques of estimating animal density through direct counts using line transects during 1988-92 in the tropical deciduous forests of Mudumalai Sanctuary in southern India for four species of large herbivorous mammals, namely, chital (Axis axis), sambar (Cervus unicolor), Asian elephant (Elephas maximus) and gaur (Bos gauras). Density estimates derived from the Fourier Series and the Half-Normal models consistently had the lowest coefficient of variation. These two models also generated similar mean density estimates. For the Fourier Series estimator, appropriate cut-off widths for analysing line transect data for the four species are suggested. Grouping data into various distance classes did not produce any appreciable differences in estimates of mean density or their variances, although model fit is generally better when data are placed in fewer groups. The sampling effort needed to achieve a desired precision (coefficient of variation) in the density estimate is derived. A sampling effort of 800 km of transects returned a 10% coefficient of variation on estimate for chital; for the other species a higher effort was needed to achieve this level of precision. There was no statistically significant relationship between detectability of a group and the size of the group for any species. Density estimates along roads were generally significantly different from those in the interior af the forest, indicating that road-side counts may not be appropriate for most species.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We derive expressions for convolution multiplication properties of discrete cosine transform II (DCT II) starting from equivalent discrete Fourier transform (DFT) representations. Using these expressions, a method for implementing linear filtering through block convolution in the DCT II domain is presented. For the case of nonsymmetric impulse response, additional discrete sine transform II (DST II) is required for implementing the filter in DCT II domain, where as for a symmetric impulse response, the additional transform is not required. Comparison with recently proposed circular convolution technique in DCT II domain shows that the proposed new method is computationally more efficient.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Technical or contaminated ethanol products are sometimes ingested either accidentally or on purpose. Typical misused products are black-market liquor and automotive products, e.g., windshield washer fluids. In addition to less toxic solvents, these liquids may contain the deadly methanol. Symptoms of even lethal solvent poisoning are often non-specific at the early stage. The present series of studies was carried out to develop a method for solvent intoxication breath diagnostics to speed up the diagnosis procedure conventionally based on blood tests. Especially in the case of methanol ingestion, the analysis method should be sufficiently sensitive and accurate to determine the presence of even small amounts of methanol from the mixture of ethanol and other less-toxic components. In addition to the studies on the FT-IR method, the Dräger 7110 evidential breath analyzer was examined to determine its ability to reveal a coexisting toxic solvent. An industrial Fourier transform infrared analyzer was modified for breath testing. The sample cell fittings were widened and the cell size reduced in order to get an alveolar sample directly from a single exhalation. The performance and the feasibility of the Gasmet FT-IR analyzer were tested in clinical settings and in the laboratory. Actual human breath screening studies were carried out with healthy volunteers, inebriated homeless men, emergency room patients and methanol-intoxicated patients. A number of the breath analysis results were compared to blood test results in order to approximate the blood-breath relationship. In the laboratory experiments, the analytical performance of the Gasmet FT-IR analyzer and Dräger 7110 evidential breath analyzer was evaluated by means of artificial samples resembling exhaled breath. The investigations demonstrated that a successful breath ethanol analysis by Dräger 7110 evidential breath analyzer could exclude any significant methanol intoxication. In contrast, the device did not detect very high levels of acetone, 1-propanol and 2-propanol in simulated breath. The Dräger 7110 evidential breath ethanol analyzer was not equipped to recognize the interfering component. According to the studies the Gasmet FT-IR analyzer was adequately sensitive, selective and accurate for solvent intoxication diagnostics. In addition to diagnostics, the fast breath solvent analysis proved feasible for controlling the ethanol and methanol concentration during haemodialysis treatment. Because of the simplicity of the sampling and analysis procedure, non-laboratory personnel, such as police officers or social workers, could also operate the analyzer for screening purposes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We describe the synthesis and structure of Barium sulfate nanoparticles by precipitation method in the presence of water soluble inorganic stabilizing agent, sodium hexametaphosphate, (NaPO3)(6). The structural parameters were refined by the Rietveld refinement method using powder X-ray diffraction data. Barium sulfate nanoparticles were crystallized in the orthorhombic structure with space group Pbnm (No. 62) having the lattice parameters a = 7.215(1) (angstrom), b = 8.949(1) (angstrom) and c = 5.501 (1) (angstrom) respectively. Transmission electron microscopy study reveals that the nanoparticles are size range, 30-50 nm. Fourier transform infrared spectra showed distinct absorption due to the SO42- moiety at 1115 and 1084 cm(-1) indicating formation of barium sulfate nanoparticles free from the phosphate group from the stabilizer used in the synthesis. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Gd2O3:Eu3+ (0.5-8.0 mol%) nanophosphors have been prepared by low temperature solution combustion method using metal nitrates as oxidizers and oxalyl dihydrazide (ODH) as a fuel. The phosphors are well characterized by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FT-IR) and photoluminescence (PL) techniques. PXRD patterns of as-formed and calcined (800 degrees C, 3 h) Gd2O3 powders exhibit monoclinic phase with mean crystallite sizes ranging from 20 to 50 nm. Eu3+ doping changes the structure from monoclinic to mixed phase of monoclinic and cubic. SEM micrographs shows the products are foamy, agglomerated and fluffy in nature due to the large amount of gases liberated during combustion reaction. Upon 254 nm excitation the photoluminescence of the Gd2O3:Eu3+ particles show red emission at 611 nm corresponding to D-5(0)-> F-7(2) transition. It is observed that PL intensity increases with calcination temperature. This might be attributed to better crystallization and eliminates the defects, which serve as centers of non-radiative relaxation for nanomaterials. It is observed that the optical energy gap (E-g) is widened with increase Eu3+ content. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report the rapid solution combustion synthesis and characterization of Ag-substituted LaMnO3 phases at relatively low temperature using oxalyl dihydrazide, as fuel. Structural parameters were refined by the Rietveld method using powder X-ray diffraction data. While the parent LaMnO3 crystallizes in the orthorhombic structure, the Ag-substituted compounds crystallize in the rhombohedral symmetry. On increasing Ag-content, unit cell volume and Mn-O-Mn bond angle decreases. The Fourier transform infra red spectrum shows two absorption bands corresponding to Mn-O stretching vibration (v(s) mode) and Mn-O-Mn deformation vibration (v(b) mode) around 600 cm(-1) and 400 cm(-1) for the compositions x = 0.0, 0.05 and 0.10, respectively. Electrical resistivity measurements reveal that composition-controlled metal to insulator transition, with the maximum metal to insulator being 280 K for the composition La0.75Ag0.25MnO3. Increase in magnetic moment was observed with increase in Ag-content. The maximum magnetic moment of 35 emu/g was observed for the composition La0.80Ag0.20MnO3. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A practical method is proposed to identify the mode associated with the frequency part of the eigenvalue of the Floquet transition matrix (FTM). From the FTM eigenvector, which contains the states and their derivatives, the ratio of the derivative and the state corresponding to the largest component is computed. The method exploits the fact that the imaginary part of this (complex) ratio closely approximates the frequency of the mode. It also lends itself well to automation and has been tested over a large number of FTMs of order as high as 250.