909 resultados para Fourier Spectral Method
Resumo:
Experimental particle dispersion patterns in a plane wake flow at a high Reynolds number have been predicted numerically by discrete vortex method (Phys. Fluids A 1992; 4:2244-2251; Int. J. Multiphase Flow 2000; 26:1583-1607). To address the particle motion at a moderate Reynolds number, spectral element method is employed to provide an instantaneous wake flow field for particle dynamics equations, which are solved to make a detail classification of the patterns in relation to the Stokes and Froude numbers. It is found that particle motion features only depend on the Stokes number at a high Froude number and depend on both numbers at a low Froude number. A ratio of the Stokes number to squared Froude number is introduced and threshold values of this parameter are evaluated that delineate the different regions of particle behavior. The parameter describes approximately the gravitational settling velocity divided by the characteristic velocity of wake flow. In order to present effects of particle density but preserve rigid sphere, hollow sphere particle dynamics in the plane wake flow is investigated. The evolution of hollow particle motion patterns for the increase of equivalent particle density corresponds to that of solid particle motion patterns for the decrease of particle size. Although the thresholds change a little, the parameter can still make a good qualitative classification of particle motion patterns as the inner diameter changes.
Resumo:
A two-step phase-retrieval method, based on Fourier-transform ghost imaging, was demonstrated. For the complex objects, the phase-retrieval process was divided into two steps: first got the complex object's amplitude from the Fourier-transform patterns of the squared object function, then combining with the Fourier-transform patterns of the object function to get the phase. The theoretical basis of this technique is outlined, and the experimental results are presented. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate a full-range parallel Fourier-domain optical coherence tomography (FD-OCT) in which a tomogram free of mirror images as well as DC and autocorrelation terms is obtained in parallel. The phase and amplitude of two-dimensional spectral interferograms are accurately detected by using sinusoidal phase-modulating interferometry and a two-dimensional CCD camera, which allows for the reconstruction of two-dimensional complex spectral interferograms. By line-by-line inverse Fourier transformation of the two-dimensional complex spectral interferogram, a full-range parallel FD-OCT is realized. Tomographic images of two separated glass coverslips obtained with our method are presented as a proof-of-principle experiment.
Resumo:
We propose a novel method of one-shot parallel complex Fourier-domain optical coherence tomography using a spatial carrier frequency for full range imaging. The spatial carrier frequency is introduced into the 2-D spectral interferogram in the lateral direction by using a tilted reference wavefront. This spatial-carrier- contained 2-D spectral interferogram is recorded with one shot of a 2-D CCD camera, and is Fourier-transformed in the lateral direction to obtain a 2-D complex spectral interferogram by a spatial-carrier technique. A full-range tomogram is reconstructed from the 2-D complex spectral interferogram. The principle of this method is confirmed by cross-sectional imaging of a glass slip object. (c) 2008 Society of Photo-Optical Instrumentation Engineers.
Resumo:
In this paper, a Decimative Spectral estimation method based on Eigenanalysis and SVD (Singular Value Decomposition) is presented and applied to speech signals in order to estimate Formant/Bandwidth values. The underlying model decomposes a signal into complex damped sinusoids. The algorithm is applied not only on speech samples but on a small amount of the autocorrelation coefficients of a speech frame as well, for finer estimation. Correct estimation of Formant/Bandwidth values depend on the model order thus, the requested number of poles. Overall, experimentation results indicate that the proposed methodology successfully estimates formant trajectories and their respective bandwidths.
Resumo:
A gain measurement technique, based on Fourier series expansion of periodically extended single fringe of the amplified spontaneous emission spectrum, is proposed for Fabry-Perot semiconductor lasers. The underestimation of gain due to the limited resolution of the measurement system is corrected by a factor related to the system response function. The standard deviations of the gain-reflectivity product under low noise conditions are analyzed for the Fourier series expansion method and compared with those of the Hakki-Paoli method and Cassidy's method. The results show that the Fourier series expansion method is the least sensitive to noise among the three methods. The experiment results obtained by the three methods are also presented and compared.
Resumo:
We present measurements of morphological features in a thick turbid sample using light-scattering spectroscopy (LSS) and Fourier-domain low-coherence interferometry (fLCI) by processing with the dual-window (DW) method. A parallel frequency domain optical coherence tomography (OCT) system with a white-light source is used to image a two-layer phantom containing polystyrene beads of diameters 4.00 and 6.98 mum on the top and bottom layers, respectively. The DW method decomposes each OCT A-scan into a time-frequency distribution with simultaneously high spectral and spatial resolution. The spectral information from localized regions in the sample is used to determine scatterer structure. The results show that the two scatterer populations can be differentiated using LSS and fLCI.
Resumo:
A simulation program has been developed to calculate the power-spectral density of thin avalanche photodiodes, which are used in optical networks. The program extends the time-domain analysis of the dead-space multiplication model to compute the autocorrelation function of the APD impulse response. However, the computation requires a large amount of memory space and is very time consuming. We describe our experiences in parallelizing the code using both MPI and OpenMP. Several array partitioning schemes and scheduling policies are implemented and tested Our results show that the OpenMP code is scalable up to 64 processors on an SGI Origin 2000 machine and has small average errors.
Resumo:
Cryptographic algorithms have been designed to be computationally secure, however it has been shown that when they are implemented in hardware, that these devices leak side channel information that can be used to mount an attack that recovers the secret encryption key. In this paper an overlapping window power spectral density (PSD) side channel attack, targeting an FPGA device running the Advanced Encryption Standard is proposed. This improves upon previous research into PSD attacks by reducing the amount of pre-processing (effort) required. It is shown that the proposed overlapping window method requires less processing effort than that of using a sliding window approach, whilst overcoming the issues of sampling boundaries. The method is shown to be effective for both aligned and misaligned data sets and is therefore recommended as an improved approach in comparison with existing time domain based correlation attacks.
Resumo:
This paper introduces a novel method of estimating theFourier transform of deterministic continuous-time signals from a finite number N of their nonuniformly spaced measurements. These samples, located at a mixture of deterministic and random time instants, are collected at sub-Nyquist rates since no constraints are imposed on either the bandwidth or the spectral support of the processed signal. It is shown that the proposed estimation approach converges uniformly for all frequencies at the rate N^−5 or faster. This implies that it significantly outperforms its alias-free-sampling-based predecessors, namely stratified and antithetical stratified estimates, which are shown to uniformly convergence at a rate of N^−1. Simulations are presented to demonstrate the superior performance and low complexity of the introduced technique.
Resumo:
Calculations of the absorption of solar radiation by atmospheric gases, and water vapor in particular, are dependent on the quality of databases of spectral line parameters. There has been increasing scrutiny of databases such as HITRAN in recent years, but this has mostly been performed on a band-by-band basis. We report nine high-spectral-resolution (0.03 cm(-1)) measurements of the solar radiation reaching the surface in southern England over the wave number range 2000 to 12,500 cm(-1) (0.8 to 5 mm) that allow a unique assessment of the consistency of the spectral line databases over this entire spectral region. The data are assessed in terms of the modeled water vapor column that is required to bring calculations and observations into agreement; for an entirely consistent database, this water vapor column should be constant with frequency. For the HITRAN01 database, the spread in water vapor column is about 11%, with distinct shifts between different spectral regions. The HITRAN04 database is in significantly better agreement (about 5% spread) in the completely updated 3000 to 8000 cm(-1) spectral region, but inconsistencies between individual spectral regions remain: for example, in the 8000 to 9500 cm(-1) spectral region, the results indicate an 18% (+/- 1%) underestimate in line intensities with respect to the 3000 to 8000 cm(-1) region. These measurements also indicate the impact of isotopic fractionation of water vapor in the 2500 to 2900 cm(-1) range, where HDO lines dominate over the lines of the most abundant isotope of H2O.