964 resultados para Forestry pest
Assessment of insect occurrence in boreal forests based on satellite imagery and field measurements.
Resumo:
The presence/absence data of twenty-seven forest insect taxa (e.g. Retinia resinella, Formica spp., Pissodes spp., several scolytids) and recorded environmental variation were used to investigate the applicability of modelling insect occurrence based on satellite imagery. The sampling was based on 1800 sample plots (25 m by 25 m) placed along the sides of 30 equilateral triangles (side 1 km) in a fragmented forest area (approximately 100 km2) in Evo, S Finland. The triangles were overlaid on land use maps interpreted from satellite images (Landsat TM 30 m multispectral scanner imagery 1991) and digitized geological maps. Insect occurrence was explained using either environmental variables measured in the field or those interpreted from the land use and geological maps. The fit of logistic regression models varied between species, possibly because some species may be associated with the characteristics of single trees while other species with stand characteristics. The occurrence of certain insect species at least, especially those associated with Scots pine, could be relatively accurately assessed indirectly on the basis of satellite imagery and geological maps. Models based on both remotely sensed and geological data better predicted the distribution of forest insects except in the case of Xylechinus pilosus, Dryocoetes sp. and Trypodendron lineatum, where the differences were relatively small in favour of the models based on field measurements. The number of species was related to habitat compartment size and distance from the habitat edge calculated from the land use maps, but logistic regressions suggested that other environmental variables in general masked the effect of these variables in species occurrence at the present scale.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
XVIII IUFRO World Congress, Ljubljana 1986.
Resumo:
Oryctes baculovirus is a viral biocide exploited for the control of the insect pest Oryctes rhinoceros. We have recently established a physical map of the genome of the Indian isolate of Oryctes baculovirus (OBV-KI). Here we examine the genomic relatedness between OBV-KI and OBV-PV505, the type isolate (originally from the Philippines), by DNA reassociation kinetics and by the use of restriction endonucleases. On the basis of differences in restriction-enzyme profiles between the two genomes, and previously reported differences in protein profiles and antigenic makeup, we propose the taxonomic status of a variant of Oryctes baculovirus for the Indian isolate.
Resumo:
Metsäteollisuudesta kertyy vuosittain suuria määriä ylijäämämateriaalia, kuten puun kuorta ja oksia.Ylimääräinen aines käytetään pääasiassa energiantuotantoon, mutta uusia soveltamismahdollisuuksia kaivataan. Kuoren on havaittu olevan potentiaalinen lähde monille bioaktiivisille yhdisteille, joille olisi käyttöä esimerkiksi lääke- ja kemianteollisuudessa sekä maa-, metsä- ja puutarhatuotannon tuholaistorjunnassa. Tutkimus on osa Euroopan Unionin rahoittamaa ForestSpeCs-projektia, jonka tarkoituksena on selvittää metsäteollisuuden ylijäämämateriaalien vaihtoehtoisia käyttötapoja. Valittujen kymmenen teollisesti merkittävän pohjoisen puulajin (Abies nephrolepis, Betula pendula, Larix decidua, L. gmelinii, L. sibirica, Picea abies, P. ajanensis, P. pumila, Pinus sylvestris, Populus tremula) kuoresta uutettujen aineiden soveltuvuutta syönninestoaineeksi testattiin kaaliperhosen (Pieris brassicae L.) ja krysanteemiyökkösen (Spodoptera littoralis Boisduval) toukilla sekä osittain sinappikuoriaisella (Phaedon cochloreae Fabricius) ja idänlehtikuoriaisella (Agelastica alni L.). Uutteet valmistettiin yhteistyössä projektin ryhmien avulla tai itsenäisesti erilaisin menetelmin. Testaukset tehtiin laboratorio-oloissa käyttäen lehtikiekkojen valintabiotestiä sekä karkeilla uutteilla että niistä erotelluilla yksittäisillä yhdisteillä. Tehdyistä mittauksista laskettiin syönninestoindeksit (FDI). Tulosten perusteella lähes kaikki testatut uutteet vaikuttivat ainakin jossain määrin kohdehyönteisen syöntikäyttäytymiseen. Hieman yli puolet kaaliperhosella testatuista 46 uutteesta aiheuttivat yli 50 % syönnineston eli kaaliperhonen suosi kontrollilehtiä uutteella käsiteltyjä todennäköisemmin. Krysanteemiyökkösellä yli 50 %:n syönnineston aiheuttivat vain seitsemän testatuista 56 uutteesta. Lisäksi kolme uutetta lisäsi käsiteltyjen kiekkojen syöntiä merkittävästi. Idänlehtikuoriaistoukat ja -aikuiset karttoivat erityisesti abietiinihapolla käsiteltyjä lehtiä. Sinappikuoriaisella testatut uutteet toimivat myös lupaavasti. Testattujen puulajien kuoresta on mahdollista uuttaa biologisesti aktiivisia yhdisteitä, mutta tuholaistorjunnan kannalta oikeiden pitoisuuksien ja tehokkaiden uuttomenetelmien löytäminen vaatii jatkotutkimuksia. Kuoren sisältämien yhdisteiden laatu ja määrä vaihtelevat monien tekijöiden, kuten ympäristön ja genetiikan vaikutuksesta. Hyönteisten sietokyky vaihtelee myös paljon lajeittain ja yksilöidenkin välillä on eroja. Uutteista valmistettavia torjunta-aineita olisi kuitenkin mahdollista sisällyttää esimerkiksi integroituun torjuntaan muiden menetelmien rinnalle tulevaisuudessa.
Resumo:
The purpose of this study was to examine the integrated climatic impacts of forestry and the use fibre-based packaging materials. The responsible use of forest resources plays an integral role in mitigating climate change. Forests offer three generic mitigation strategies; conservation, sequestration and substitution. By conserving carbon reservoirs, increasing the carbon sequestration in the forest or substituting fossil fuel intensive materials and energy, it is possible to lower the amount of carbon in the atmosphere through the use of forest resources. The Finnish forest industry consumed some 78 million m3 of wood in 2009, while total of 2.4 million tons of different packaging materials were consumed that same year in Finland. Nearly half of the domestically consumed packaging materials were wood-based. Globally the world packaging material market is valued worth annually some €400 billion, of which the fibre-based packaging materials account for 40 %. The methodology and the theoretical framework of this study are based on a stand-level, steady-state analysis of forestry and wood yields. The forest stand data used for this study were obtained from Metla, and consisted of 14 forest stands located in Southern and Central Finland. The forest growth and wood yields were first optimized with the help of Stand Management Assistant software, and then simulated in Motti for forest carbon pools. The basic idea was to examine the climatic impacts of fibre-based packaging material production and consumption through different forest management and end-use scenarios. Economically optimal forest management practices were chosen as the baseline (1) for the study. In the alternative scenarios, the amount of fibre-based packaging material on the market decreased from the baseline. The reduced pulpwood demand (RPD) scenario (2) follows economically optimal management practices under reduced pulpwood price conditions, while the sawlog scenario (3) also changed the product mix from packaging to sawnwood products. The energy scenario (4) examines the impacts of pulpwood demand shift from packaging to energy use. The final scenario follows the silvicultural guidelines developed by the Forestry Development Centre Tapio (5). The baseline forest and forest product carbon pools and the avoided emissions from wood use were compared to those under alternative forest management regimes and end-use scenarios. The comparison of the climatic impacts between scenarios gave an insight into the sustainability of fibre-based packaging materials, and the impacts of decreased material supply and substitution. The results show that the use of wood for fibre-based packaging purposes is favorable, when considering climate change mitigation aspects of forestry and wood use. Fibre-based packaging materials efficiently displace fossil carbon emissions by substituting more energy intensive materials, and they delay biogenic carbon re-emissions to the atmosphere for several months up to years. The RPD and the sawlog scenarios both fared well in the scenario comparison. These scenarios produced relatively more sawnwood, which can displace high amounts of emissions and has high carbon storing potential due to the long lifecycle. The results indicate the possibility that win-win scenarios exist by shifting production from pulpwood to sawlogs; on some of the stands in the RPD and sawlog scenarios, both carbon pools and avoided emissions increased from the baseline simultaneously. On the opposite, the shift from packaging material to energy use caused the carbon pools and the avoided emissions to diminish from the baseline. Hence the use of virgin fibres for energy purposes, rather than forest industry feedstock biomass, should be critically judged if optional to each other. Managing the stands according to the silvicultural guidelines developed by the Forestry Development Centre Tapio provided the least climatic benefits, showing considerably lower carbon pools and avoided emissions. This seems interesting and worth noting, as the guidelines are the current basis for the forest management practices in Finland.
Resumo:
There is a need to understand the carbon (C) sequestration potential of the forestry option and its financial implications for each country.In India the C emissions from deforestation are estimated to be nearly offset by C sequestration in forests under succession and tree plantations. India has nearly succeeded in stabilizing the area under forests and has adequate forest conservation strategies. Biomass demands for softwood, hardwood and firewood are estimated to double or treble by the year 2020. A set of forestry options were developed to meet the projected biomass needs, and keeping in mind the features of land categories available, three scenarios were developed: potential; demand-driven; and programme-driven scenarios. Adoption of the demand-driven scenario, targeted at meeting the projected biomass needs, is estimated to sequester 78 Mt of C annually after accounting for all emissions resulting from clearfelling and end use of biomass. The demand-driven scenario is estimated to offset 50% of national C emission at 1990 level. The cost per t of C sequestered for forestry options is lower than the energy options considered. The annual investment required for implementing the demand-driven scenario is estimated to be US$ 2.1 billion for six years and is shown to be feasible. Among forestry options, the ranking based on investment cost per t of C sequestered from least cost to highest cost is; natural regeneration-agro-forestry-enhanced natural regeneration (< US$ 2.5/t C)-timber-community-softwood forestry (US$ 3.3 to 7.3 per t of C).
Resumo:
The forestry sector provides a number of climate change mitigation options. Apart from this ecological benefit, it has significant social and economic relevance. Implementation of forestry options requires large investments and sustained long-term planning. Thus there is a need for a detailed analysis of forestry options to understand their implications on stock and flow of carbon, required investments, value of forest wealth, contribution to GNP and livelihood, demand management, employment and foreign trade. There is a need to evaluate the additional spending on forestry by analysing the environmental (particularly carbon abatement), social and economic benefits. The biomass needs for India are expected to increase by two to three times by 2020. Depending upon the forest types, ownership patterns and land use patterns, feasible forestry options are identified. It is found among many supply options to be feasible to meet the 'demand based needs' with a mix of management options, species choices and organisational set up. A comparative static framework is used to analyze the macro-economic impacts. Forestry accounts for 1.84% of GNP in India. It is characterized by significant forward industrial linkages and least backward linkage. Forestry generates about 36 million person years of employment annually. India imports Rs. 15 billion worth of forest based materials annually. Implementation of the demand based forestry options can lead to a number of ecological, economic and institutional changes. The notable ones are: enhancement of C stock from 9578 to 17 094 Mt and a net annual C-sequestration from 73 to 149 Mt after accounting for all emissions; a trebling of the output of forestry sector from Rs. 49 billion to Rs. 146 billion annually; an increase in GDP contribution of forestry from Rs. 32 billion to Rs. 105 billion over a period of 35 years; an increase in annual employment level by 23 million person years, emergence of forestry as a net contributor of foreign exchange through trading of forestry products; and an increase in economic value of forest capital stock by Rs. 7260 billion with a cost benefit analysis showing forestry as a profitable option. Implementation of forestry options calls for an understanding of current forest policies and barriers which are analyzed and a number of policy options are suggested. (C) 1997 Elsevier Science B.V.
Resumo:
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost-competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case-by-case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land-use decisions are made and how new social, political and economic forces in the future will influence this process.
Resumo:
This paper highlights some of the practices involved in integrated aquaculture such as poultry-cum-fish, pig-cum-fish, sheep and goat-cum-fish and grasscutter-cum-fish. Also the role of fisheries in alleviating protein deficiency was reviewed. Successful research findings on these practices in aquaculture at the Federal College of Forestry, Jericho, Ibadan (Nigeria) will eventually lead to alleviating protein deficiency of the inhabitants of the largest city in West African thus alleviating poverty in the nation