996 resultados para Food--Packaging.


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A relevant problem of polyolefins processing is the presence of volatile and semi-volatile compounds (VOCs and SVOCs) such as linear chains alkanes found out in final products. These VOCs can be detected by customers from the unpleasant smelt and can be an environmental issue, at the same time they can cause negative side effects during process. Since no previously standardized analytical techniques for polymeric matrix are available in bibliography, we have implemented different VOCs extraction methods and gaschromatographic analysis for quali-quantitative studies of such compounds. In literature different procedures can be found including microwave extraction (MAE) and thermo desorption (TDS) used with different purposes. TDS coupled with GC-MS are necessary for the identification of different compounds in the polymer matrix. Although the quantitative determination is complex, the results obtained from TDS/GC-MS show that by-products are mainly linear chains oligomers with even number of carbon in a C8-C22 range (for HDPE). In order to quantify these linear alkanes by-products, a more accurate GC-FID determination with internal standard has been run on MAE extracts. Regardless the type of extruder used, it is difficult to distinguish the effect of the various processes, which in any case entails having a lower-boiling substance content, lower than the corresponding virgin polymer. The two HDPEs studied can be distinguished on the basis of the quantity of analytes found, therefore the production process is mainly responsible for the amount of VOCs and SVOCs observed. The extruder technology used by Sacmi SC allows to obtain a significant reduction in VOCs compared to the conventional screw system. Thus, the result is significantly important as a lower quantity of volatile substances certainly leads to a lower migration of such materials, especially when used for food packaging.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This work has been conducted in order to determine the solubility and diffusion coefficients of different aromatic substances in two different grades of polylactic acid (PLA), Amorphous (PDLLA) and Crystalline (PLLA); in particular the focus is on the following terpenes: Linalool, α-Pinene, β-Citronellol and L-Linalool. Moreover, further analyses have been carried out with the aim to verify if the use of neat crystalline PLA, (PLLA), a chiral substrate, may lead to an enantioenrichment of absorbed species in order to use it as membrane in enantioselective processes. The other possible applications of PLA, which has aroused interest in carry out the above-mentioned work, concerns its use in food packaging. Therefore, it is interesting and also very important, to evaluate the barrier properties of PLA, focusing in particular on the transport and absorption of terpenes, by the packaging and, hence, by the PLA. PLA films/slabs of one-millimeter thickness and with square shape, were prepared through the Injection Molding process. On the resulting PLA films heat pretreatment processes of normalizing were then performed to enhance the properties of the material. In order to evaluate solubility and diffusion coefficient of the different penetrating species, the absorption kinetics of various terpenes, in the two different types of PLA, were determined by gravimetric methods. Subsequently, the absorbed liquid was extracted with methanol (MeOH), non- solvent for PLA, and the extract analyzed by the use of High Performance Liquid Chromatography (HPLC), in order to evaluate its possible enantiomeric excess. Moreover, PLA films used were subjected to differential scanning calorimetry (DSC) which allowed to measure the glass transition temperature (Tg) and to determine the degree of crystallinity of the polymer (Xc).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The interpretation of phase equilibrium and mass transport phenomena in gas/solvent - polymer system at molten or glassy state is relevant in many industrial applications. Among tools available for the prediction of thermodynamics properties in these systems, at molten/rubbery state, is the group contribution lattice-fluid equation of state (GCLF-EoS), developed by Lee and Danner and ultimately based on Panayiotou and Vera LF theory. On the other side, a thermodynamic approach namely non-equilibrium lattice-fluid (NELF) was proposed by Doghieri and Sarti to consistently extend the description of thermodynamic properties of solute polymer systems obtained through a suitable equilibrium model to the case of non-equilibrium conditions below the glass transition temperature. The first objective of this work is to investigate the phase behaviour in solvent/polymer at glassy state by using NELF model and to develop a predictive tool for gas or vapor solubility that could be applied in several different applications: membrane gas separation, barrier materials for food packaging, polymer-based gas sensors and drug delivery devices. Within the efforts to develop a predictive tool of this kind, a revision of the group contribution method developed by High and Danner for the application of LF model by Panayiotou and Vera is considered, with reference to possible alternatives for the mixing rule for characteristic interaction energy between segments. The work also devotes efforts to the analysis of gas permeability in polymer composite materials as formed by a polymer matrix in which domains are dispersed of a second phase and attention is focused on relation for deviation from Maxwell law as function of arrangement, shape of dispersed domains and loading.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Il problema dello smaltimento delle plastiche tradizionali di origine petrolchimica ha stimolato l’interesse verso i materiali plastici bio-based biodegradabili come i PHB che, al contrario, possono essere degradati facilmente e in tempi rapidi dai batteri naturalmente presenti nell’ecosistema. Uno dei principali campi di applicazione dei PHA è quello del food packaging. L’uso di imballaggi attivi dove un antiossidante, disperso nella matrice polimerica, migra dall’imballaggio al cibo può essere utile per aumentare la shelf life degli alimenti ma anche per introdurre con la dieta fonti antiossidanti esogene che neutralizzano gli effetti dannosi dei radicali liberi, normalmente prodotti dai processi biologici. I tannini sono antiossidanti naturali che agiscono da riducenti, donano un idrogeno ai radicali liberi stabilizzandoli (free radical scavengers). Si può quindi usare il tannino estratto dal legno come bioadditivo per matrici biopolimeriche (PHB). Recuperando questo prodotto di scarto dell’industria agro-alimentare, si riesce ad abbassare il costo del prodotto finale che risulterà inoltre 100% biodegradabile e con capacità antiossidanti, quindi particolarmente adatto per il food packaging monouso. La bioplastica finale è stata ottenuta “melt mixando” il tannino in polvere, il PHB in pellets e il catalizzatore Ti(OBu)4 liquido in un mescolatore interno Brabender. Sono stati creati 4 campioni a percentuale crescente di tannino e catalizzatore. Sono state effettuate: - Prove di estrazione in acqua per capire quanto tannino non si fosse legato alla matrice biopolimerica. - Analisi FTIR per capire se fosse avvenuto un legame di transesterificazione tra matrice e tannino usando il Ti(OBu)4. - Prove di radical scavenging activity attraverso la spettroscopia uv-visibile per quantificare il potere antiossidante del tannino. - Analisi GPC, DSC e prove di trazione per confrontare le proprietà meccaniche e termiche dei campioni con quelle del PHB puro.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The purpose of my internship, carried out during my Erasmus period at the Complutense University of Madrid, was focused on the formulation of ionogels and hydrogels for the obtainment of films with high lignin content, and on their characterization measuring their antibacterial properties. For biomass formulation I used lignocellulosic biomass (Pinus Radiata) as raw material and ionic liquid as solvent. The two ionic liquids proposed were: 1-ethyl-3-methylimidazoliumdimethylphosphate [Emim][DMP] and 1-ethyl-3-methylimidazoliumdiethylphosphate [Emim][DEP]. The two-starting cellulose-rich solids were obtained from Pinus radiata wood that had been submitted to an organosolv process, to reduce its lignin content to fifteen (ORG15) and twenty per cent (ORG20). Having two ionic liquids and two solids available, the first phase of the project was devoted to the screening of both solids in both ionic liquids. Through this, it was possible to identify that only the [Emim][DMP] ionic liquid fulfils the purpose. It was also possible to discard the cellulose-rich solid ORG20 because its dissolution in the ionic liquid was not possible (after the time fixed) and, additionally, a Pinus radiata cellulose-rich solid bleached with hydrogen peroxide and containing ten per cent of lignin (ORG10B) was included in the screening. After screening, a total of five ionogels were subsequently formulated: two gels were formulated with the starting raw material ORG15 (with 1% and 1.75% cellulose, respectively) and three with ORG10B (with 1%, 1.75% and 3% cellulose, respectively). Five hydrogels were obtained from the ionogels. Rheological tests were performed on each ionogel and hydrogel. Finally, films were formulated from hydrogels and they were analysed by antibacterial testing to see if they could be applied as food packaging. In addition, antioxidant and properties such as opacity and transparency were also studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of this work was to optimize a methodology to extract cellulose and to produce NC, from different lignocellulosic biomasses (sorghum, Sorghum bicolor (L.) Moench and sunn hemp, Crotalaria juncea L.). In addition, the NC produced was tested as a reinforcing agent in chitosan (Ch) films, to understand its effects on the properties of this biopolymer. The nanoparticles obtained from sorghum and sunn hemp were incorporated in Ch films at a rate of 2.5% w/w of chitosan, and the resultant bionanocomposites (Sorghum NC films and sunn hemp NC films) were fully characterized in terms of their morphology, mechanical and optical properties, permeability (water vapor), water wettability, and FT-IR spectra analysis. Chitosan films reinforced with commercial nanocellulose at the same rate were tested for comparison, as well as pristine chitosan (control). Bionanocomposites made from sorghum and sunn hemp NC were slightly more saturated and opaque than the pristine chitosan films, in particular outer sorghum NC films. Sunn hemp NC films also showed a slightly higher thickness than sorghum NC films and pristine chitosan films. Further, the results confirmed that sorghum NC improved the strength and stiffness of the chitosan biopolymer and that sunn hemp NC improved the plasticity of the chitosan polymer. Hence, results indicate that those lignocellulosic crops may afford a source of NC for the production of bionanocomposites. Considering the application of those bionanocomposites by the food packaging industry, sorghum NC - chitosan films showed more promising results than sunn hemp NC-chitosan films.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Field Lab: Children consumer behaviour

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The main research problem of this thesis is to find out the means of promoting the recovery of packaging waste generated in thefast food industry. The recovery of packaging waste generated in the fast food industry is demanded by the packaging waste legislation and expected by the public. The means are revealed by the general factors influencing the recovery of packaging waste, analysed by a multidisciplinary literature review and a case study focusing on the packaging waste managementof McDonald's Oy operating in Finland. The existing solid waste infrastructure does not promote the recovery ofpackaging waste generated in the fast food industry. The theoretical recovery rate of the packaging waste is high, 93 %, while the actual recovery rate is only 29 % consisting of secondary packaging manufactured from cardboard. The total recovery potential of packaging waste is 64 %, resulting in 1 230 tonnes ofrecoverable packaging waste. The achievable recovery potential of 33 %, equalling 647 tonnes of packaging waste could be recovered, but is not recovered mainly because of non-working waste management practises. The theoretical recovery potential of 31 %, equalling 583 tonnes of packaging waste can not be recovered by the existing solid waste infrastructure because of the obscure status of commecial waste, the improper operation ofproducer organisations, and the municipal autonomy. The sorting experiment indicated that it is possible to reach the achievable recovery potential inthe existing solid waste infrastructure. The achievement is promoted by waste producer -oriented waste management practises. The theoretical recovery potential can be reached by increasing the consistency of the solid waste infrastructure through governmental action.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Active packaging is becoming an emerging food technology to improve quality and safety of food products. One of the most common approaches is based on the release of antioxidant/antimicrobial compounds from the packaging material. In this work an antifungal active packaging system based on the release of carvacrol and thymol was optimized to increase the post-harvest shelf life of fresh strawberries and bread during storage. Thermal properties of the developed packaging material were determined by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). Volatile compounds in food samples contained in active packaging systems were monitored by using headspace solid phase microextraction followed by gas chromatography analysis (HS-SPME-GC-MS) at controlled conditions. The obtained results provided evidences that exposure to carvacrol and thymol is an effective way to enlarge the quality of strawberries and bread samples during distribution and sale.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mi sono occupato di confezionamento di bevande, un settore che utilizza largamente il PET. Il progetto di tesi consiste in un processo che serve a ideare nuove forme di contenitore in PET attraverso strumenti di ricerca e innovazione.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Field lab in marketing: Children consumer behaviour