969 resultados para Flow Pattern


Relevância:

60.00% 60.00%

Publicador:

Resumo:

A thermodynamic model for the GaSb-GaCl3 system in a closed quartz ampoule was proposed. The species in the gas phase are GaCl, GaCl3, Sb-4, Sb-2. The partial pressures of these species and total pressure in the ampoule have been calculated. The calculated results indicate that the equilibrium partial pressures of GaCl, GaCl3, Sb4, Sb2 and the total pressure in the ampoule have strong dependence on temperature, free volume inside the closed ampoule and amount of transport agent GaCl3. The total pressure will give strong influence not only on the flow pattern in the ampoule, but also on the uniformity of the epilayer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical simulations of the multi-shock interactions observable around hypersonic vehicles were carried out by solving Navier-Stokes equations with the AUSMPW scheme and the new type of the IV interaction created by two incident shock waves was investigated in detail. Numerical results show that the intersection point of the second incident shock with the bow shock plays important role on the flow pattern, peak pressures and heat fluxes. In the case of two incident shocks interacting with the bow shock at the same position, the much higher peak pressure and more severe heat transfer rate are induced than the classical IV interaction. The phenomenon is referred to as the multi-shock interaction and higher requirements will be imposed on thermal protection systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, preliminary experimental results are presented on pressure drop characteristics of single and two-phase flows through two T-type rectangular microchannel mixers with hydraulic diameters of 528 and 333 mum, respectively. It is shown that both N-2 and water single-phase laminar flows in microchannels, with consideration of experimental uncertainties, are consistent with classic theory, if additional effects, such as entrance effects that will interfere with the interpretation of experimental results, are eliminated by carefully designing the experiments. The obtained pressure drop data of N-2-water two-phase flow in micromixers are analyzed and compared with existing flow pattern-independent models. It is found that the Lockhart-Martinelli method generally underpredicts the frictional pressure drop. Thereafter, a modified correlation of C value in the Chisholm's equation based on linear regression of experimental data is proposed to provide a better prediction of the two-phase frictional pressure drop. Also among the homogeneous flow models investigated, the viscosity correlation of McAdams indicates the best performance in correlating the frictional pressure drop data (mean deviations within +/-20% for two micromixers both). Finally it is suggested that systematic studies are still required to accurately predict two-phase frictional performance in microchannels. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

针对机器人控制领域中一类多输入多输出(MIMO)仿射非线性系统,提出了一种基于平衡流形的近似线性化状态反馈镇定算法,并用此算法解决了一类完整约束轮式移动机器人(WMR)的镇定问题.仿真分析表明,此方法不仅能够实现系统的镇定,而且降低了因平衡工作点变动给系统稳定性带来的影响,同时也大大地简化了对非线性系统的综合设计过程,具有良好的控制效果和实用性.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Groundwater basin is important for water supply in northern China. The paper took the Jingsheng Basin in Lingshi County, Shanxi Province as a case to study the basin groundwater system by numerical modeling. The hydrogeological characteristics were analysed basing on the field investigation, and a three-dimensional groundwater flow model was established to describe the groundwater flow system in the Jingsheng groundwater basin. The boundary of the model was determined by using geophysics and GIS data, and the lumped parameter model of runoff was used to depict the transform between the surface water and groundwater, and the groundwater dating data was used to calibrate the model. All these methods were used to improve the model. The Software Visual MODFLOW 2000 was applied to set up the numerical groundwater flow model. The groundwater flow pattern in the average year, the high-water year and the low-water year were simulated respectively by the model. Some new cognition to the groundwater movement in Jingsheng Basin was obtained in the paper. The difficult problems were resolved when using the conventional and theoretical analysis to forecast and appraise the exploitation of the groundwater, and supplies the instructional technology base for the reasonable exploitation and optimization collocation. The numerical model will improve evaluation of the basin groundwater resources.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerical modeling of groundwater is very important for understanding groundwater flow and solving hydrogeological problem. Today, groundwater studies require massive model cells and high calculation accuracy, which are beyond single-CPU computer’s capabilities. With the development of high performance parallel computing technologies, application of parallel computing method on numerical modeling of groundwater flow becomes necessary and important. Using parallel computing can improve the ability to resolve various hydro-geological and environmental problems. In this study, parallel computing method on two main types of modern parallel computer architecture, shared memory parallel systems and distributed shared memory parallel systems, are discussed. OpenMP and MPI (PETSc) are both used to parallelize the most widely used groundwater simulator, MODFLOW. Two parallel solvers, P-PCG and P-MODFLOW, were developed for MODFLOW. The parallelized MODFLOW was used to simulate regional groundwater flow in Beishan, Gansu Province, which is a potential high-level radioactive waste geological disposal area in China. 1. The OpenMP programming paradigm was used to parallelize the PCG (preconditioned conjugate-gradient method) solver, which is one of the main solver for MODFLOW. The parallel PCG solver, P-PCG, is verified using an 8-processor computer. Both the impact of compilers and different model domain sizes were considered in the numerical experiments. The largest test model has 1000 columns, 1000 rows and 1000 layers. Based on the timing results, execution times using the P-PCG solver are typically about 1.40 to 5.31 times faster than those using the serial one. In addition, the simulation results are the exact same as the original PCG solver, because the majority of serial codes were not changed. It is worth noting that this parallelizing approach reduces cost in terms of software maintenance because only a single source PCG solver code needs to be maintained in the MODFLOW source tree. 2. P-MODFLOW, a domain decomposition–based model implemented in a parallel computing environment is developed, which allows efficient simulation of a regional-scale groundwater flow. The basic approach partitions a large model domain into any number of sub-domains. Parallel processors are used to solve the model equations within each sub-domain. The use of domain decomposition method to achieve the MODFLOW program distributed shared memory parallel computing system will process the application of MODFLOW be extended to the fleet of the most popular systems, so that a large-scale simulation could take full advantage of hundreds or even thousands parallel processors. P-MODFLOW has a good parallel performance, with the maximum speedup of 18.32 (14 processors). Super linear speedups have been achieved in the parallel tests, indicating the efficiency and scalability of the code. Parallel program design, load balancing and full use of the PETSc were considered to achieve a highly efficient parallel program. 3. The characterization of regional ground water flow system is very important for high-level radioactive waste geological disposal. The Beishan area, located in northwestern Gansu Province, China, is selected as a potential site for disposal repository. The area includes about 80000 km2 and has complicated hydrogeological conditions, which greatly increase the computational effort of regional ground water flow models. In order to reduce computing time, parallel computing scheme was applied to regional ground water flow modeling. Models with over 10 million cells were used to simulate how the faults and different recharge conditions impact regional ground water flow pattern. The results of this study provide regional ground water flow information for the site characterization of the potential high-level radioactive waste disposal.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on the temperature data from 196 wells and thermal conductivity measurements of 90 rock samples, altogether 35 heat flow data are obtained. The results show that the Junggar basin is a relatively "cold basin" at present. The thermal gradients vary between 11.6 and 26.5 ℃/km, and the thermal conductivity change from 0.17 to 3.6 W/mK. Heat flow ranges from 23.4 to 53.7 mW/m~2 with a mean of 42.3 ± 7.7 mW/m~2. The heat flow pattern shows that heat flow is higher on the uplifts and lower on the depressions. The overall low present-day heat flow in the Junggar Basin reflects its stable cratonic basement and Cenozoic tectonothermal evolution characterized by lithospheric thickening, thrust and fault at shallow crust as well as consequently quick subsidence during the Late Cenozoic. The study of the basin thermal history, which is one of the important content of the basin analysis, reveals not only the process of the basin's tectonothermal evolution, but also the thermal evolution of the source rocks based on the hydrocarbon generation models. The latter is very helpful for petroleum exploration. The thermal history of the Junggar basin has been reconstructed through the heat flow based method using the VR and Fission track data. The thermal evolutions of main source rocks (Permian and Jurassic) and the formations of the Permian and the Jurassic petroleum systems as well as the influences of thermal fields to petroleum system also have been discussed in this paper. Thermal history reconstruction derived from vitrinite reflectance data indicates that the Paleozoic formations experienced their maximum paleotemperature during Permian to Triassic with the higher paleoheat flow of around 70-85 mW/m~2 and the basin cooled down to the present low heat flow. The thermal evolution put a quite important effect on the formation and evolution of the petroleum system. The Jurassic petroleum system in the Junggar basin is quite limited in space and the source rocks of Middle-Lower Jurassic entered oli-window only along the foreland region of the North Tianshan belt, where the Jurassic is buried to the depth of 5-7 km. By contrast, the Middle-Lower Permian source rocks have initiated oil and gas generation in latter Permian to Triassic, and the major petroleum systems, like Mahu-West Pen 1 Well, was formed prior to Triassic when later Paleozoic formation reached the maximum paleotemperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

With the improving of mantle convection theory, the developing of computing method and increasing of the measurement data, we can numerically simulate more clearly about the effects on some geophysical observed phenomenons such as the global heat flow and global lithospheric stress field in the Earth's surface caused by mantle convection, which is the primary mechanism for the transport of heat from the Earth's deep interior to its surface and the underlying force mechanism of dynamics in the Earth.Chapter 1 reviews the historical background and present research state of mantle convection theory.In Chapter 2, the basic conception of thermal convection and the basic theory about mantle flow.The effects on generation and distribution of global lithospheric stres s field induced by mantle flow are the subject of Chapter 3. Mantle convection causes normal stress and tangential stresses at the bottom of the lithosphere, and then the sublithospheric stress field induces the lithospheric deformation as sixrface force and results in the stress field within the lithosphere. The simulation shows that the agreement between predictions and observations is good in most regions. Most of subduction zones and continental collisions are under compressive. While ocean ridges, such as the east Pacific ridge, the Atlantic ridge and the east African rift valley, are under tensile. And most of the hotspots preferentially occur in regions where calculated stress is tensile. The calculated directions of the most compressive principal horizontal stress are largely in accord with that of the observation except for some regions such as the NW-Pacifie subduction zone and Qinghai-Tibet Plateau, in which the directions of the most compressive principal horizontal stress are different. It shows that the mantel flow plays an important role in causing or affecting the large-scale stress field within the lithosphere.The global heat flow simulation based on a kinematic model of mantle convection is given in Chapter 4. Mantle convection velocities are calculated based on the internal loading theory at first, the velocity field is used as the input to solve the thermal problem. Results show that calculated depth derivatives of the near surface temperature are closely correlated to the observed surface heat flow pattern. Higher heat flow values around midocean ridge systems can be reproduced very well. The predicted average temperature as a function of function of depth reveals that there are two thermal boundary layers, one is close to the surface and another is close to the core-mantle boundary, the rest of the mantle is nearly isothermal. Although, in most of the mantle, advection dominates the heat transfer, the conductive heat transfer is still locally important in the boundary layers and plays an important role for the surface heat flow pattern. The existence of surface plates is responsible for the long wavelength surface heat flow pattern.In Chapter 5, the effects on present-day crustal movement in the China Mainland resulted from the mantle convection are introduced. Using a dynamic method, we present a quantitative model for the present-day crustal movement in China. We consider not only the effect of the India-Eurasia collision, the gravitational potential energy difference of the Tibet Plateau, but also the contribution of the shear traction on the bottom of the lithosphere induced by the global mantle convection. The comparison between our results and the velocity field obtained from the GPS observation shows that our model satisfactorily reproduces the general picture of crustal deformation in China. Numerical modeling results reveal that the stress field on the base of the lithosphere induced by the mantle flow is probably a considerable factor that causes the movement and deformation of the lithosphere in continental China with its eflfcet focuing on the Eastern China A numerical research on the small-scale convection with variable viscosity in the upper mantle is introduced in Chapter 6. Based on a two-dimensional model, small-scale convection in the mantle-lithosphere system with variable viscosity is researched by using of finite element method. Variation of viscosity in exponential form with temperature is considered in this paper The results show that if viscosity is strongly temperature-dependent, the upper part of the system does not take a share in the convection and a stagnant lid, which is identified as lithosphere, is formed on the top of system because of low temperature and high viscosity. The calculated surface heat flow, topography and gravity anomaly are associated well with the convection pattern, namely, the regions with high heat flow and uplift correspond to the upwelling flow, and vice versa.In Chapter 7, we give a brief of future research subject: The inversion of lateral density heterogeneity in the mantle by minimizing the viscous dissipation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a comparative study on the treatment of high-strength animal wastewater in two parallel lab-scale constructed reed bed systems, progressively-sized system and anti-sized system, which have same configuration but different arrangement of bed media. The reed bed systems were operated in a tidal flow pattern to treat diluted pig slurry. Detailed analyses were carried out for the removal of some key pollutants including COD, BOD5, NH4-N, P and suspended solids. The results showed that both systems have considerable capacity for the removal of solids, organic matter and inorganic nutrients. The formation of biofilms on the surfaces of gravel media in both reed bed systems was monitored by scanning selected gravel samples using scanning electron microscopy. In general, no significant difference was detected with regard to the percentage pollutant removal in the systems. However, the anti-sized system demonstrated a clear advantage in its ability to slow down the clogging of bed media and avoid the impairment of long-term functioning and sustainability of the beds. A conceptual model was developed to predict the occurrence of the clogging. The validity of the model was tested using data from this study and from the literatures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A hydrodynamic characterization of an industrially used gas-liquid contacting microchannel. device is discussed, viz. the micro bubble column of IMM. Furthermore, similar characterization of a gas-liquid flow microchip of TU/e, with two tailored mixer designs, is used to solve fundamental issues on hydrodynamics, and therefore, to achieve further design and operating optimization of that chip and the IMM device. Flow pattern maps are presented in a dimensionless fashion for further predictions on new fluidic systems for optimum single-channel multiphase operation. Bubble formation was investigated in the two types of mixers and pinch-off and hydrodynamic decay mechanisms are observed. The impact of these mechanisms on bubble size, bubble size distributions, and on the corresponding flow patterns, i.e., the type of mixer design, can be decisive for the flow pattern map and thus, may be used to alter flow pattern maps. The bubble sizes and their distribution were improved for the tailored designs, i.e., smaller and more regular bubbles were generated. Finally, the impact of multi-channel distribution for gas and liquid flow is demonstrated. Intermediate flow patterns such as slug-annular flow, also found for single-phase operation, and the simultaneous coexistence of flow regimes are presented, with the latter providing evidence of flow maldistribution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Electron energy transport experiments conducted on the Vulcan 100 TW laser facility with large area foil targets are described. For plastic targets it is shown, by the plasma expansion observed in shadowgrams taken after the interaction, that there is a transition between the collimated electron flow previously reported at the 10 TW power level to an annular electron flow pattern with a 20 degrees divergence angle for peak powers of 68 TW. Intermediate powers show that both the central collimated flow pattern and the surrounding annular-shaped heated region can co-exist. The measurements are consistent with the Davies rigid beam model for fast electron flow (Davies 2003 Phys. Rev. E 68 056404) and LSP modelling provides additional insight into the observed results.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reendothelialization involves endothelial progenitor cell (EPC) homing, proliferation, and differentiation, which may be influenced by fluid shear stress and local flow pattern. This study aims to elucidate the role of laminar flow on embryonic stem (ES) cell differentiation and the underlying mechanism. We demonstrated that laminar flow enhanced ES cell-derived progenitor cell proliferation and differentiation into endothelial cells (ECs). Laminar flow stabilized and activated histone deacetylase 3 (HDAC3) through the Flk-1-PI3K-Akt pathway, which in turn deacetylated p53, leading to p21 activation. A similar signal pathway was detected in vascular endothelial growth factor-induced EC differentiation. HDAC3 and p21 were detected in blood vessels during embryogenesis. Local transfer of ES cell-derived EPC incorporated into injured femoral artery and reduced neointima formation in a mouse model. These data suggest that shear stress is a key regulator for stem cell differentiation into EC, especially in EPC differentiation, which can be used for vascular repair, and that the Flk-1-PI3K-Akt-HDAC3-p53-p21 pathway is crucial in such a process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrodynamic models are a powerful tool that can be used by a wide range of end users to assist in predicting the effects of both physical and biological processes on local environmental conditions. This paper describes the development of a tidal model for Strangford Lough, Northern Ireland, a body of water renowned for the location of the first grid-connected tidal turbine, SeaGen, as well as the UK’s third Marine Nature Reserve. Using MIKE 21 modelling software, the development, calibration and performance of the modelare described in detail. Strangford Lough has a complex flow pattern with high flows through the Narrows (~3.5 m/s) linking the main body of the Lough to the Irish Sea and intricate flow patterns around the numerous islands. With the aid of good quality tidal and current data obtained throughout the Lough during the model development, the surface elevation and current magnitude between the observed and numerical model were almost identical with model skill >0.98 and >0.84 respectively. The applicability of the model is such that it can be used as an important tool for the prediction of important ecological processes as well as engineering applications within Strangford Lough.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In multi-terminal high voltage direct current (HVDC) grids, the widely deployed droop control strategies will cause a non-uniform voltage deviation on the power flow, which is determined by the network topology and droop settings. This voltage deviation results in an inconsistent power flow pattern when the dispatch references are changed, which could be detrimental to the operation and seamless integration of HVDC grids. In this paper, a novel droop setting design method is proposed to address this problem for a more precise power dispatch. The effects of voltage deviations on the power sharing accuracy and transmission loss are analysed. This paper shows that there is a trade-off between minimizing the voltage deviation, ensuring a proper power delivery and reducing the total transmission loss in the droop setting design. The efficacy of the proposed method is confirmed by simulation studies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bulk handling of powders and granular solids is common in many industries and often gives rise to handling difficulties especially when the material exhibits complex cohesive behaviour. For example, high storage stresses in a silo can lead to high cohesive strength of the stored solid, which may in turn cause blockages such as ratholing or arching near the outlet during discharge. This paper presents a Discrete Element Method study of discharge of a granular solid with varying levels of cohesion from a flat-bottomed silo. The DEM simulations were conducted using the commercial EDEM code with a recently developed DEM contact model for cohesive solids implemented through an API. The contact model is based on an elasto-plastic contact with adhesion and uses hysteretic non-linear loading and unloading paths to model the elastic-plastic contact deformation. The adhesion parameter is a function of the maximum contact overlap. The model has been shown to be able to predict the stress history dependent behaviour depicted by a flow function of the material. The effects of cohesion on the discharge rate and flow pattern in the silo are investigated. The predicted discharge rates are compared for the varying levels of cohesion and the effect of adhesion is evaluated. The ability of the contact model to qualitatively predict the phenomena that are present in the discharge of a silo has been shown with the salient feature of mixed flow from a flat bottomed hopper identified in the simulation.