934 resultados para Floodplains restoration


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Seagrass ecosystems are protected under the federal "no-net-loss" policy for wetlands and form one of the most productive plant communities on the planet, performing important ecological functions. Seagrass beds have been recognized as a valuable resource critical to the health and function of coastal waters. Greater awareness and public education, however, is essential for conservation of this resource. Tremendous losses of this habitat have occurred as a result of development within the coastal zone. Disturbances usually kill seagrasses rapidly, and recovery is often comparatively slow. Mitigation to compensate for destruction of existing habitat usually follows when the agent of loss and responsible party are known. Compensation assumes that ecosystems can be made to order and, in essence, trades existing functional habitat for the promise of replacement habitat. While ~lant ingse agrass is not technically complex, there is no easy way to meet the goal of maintaining or increasing seagrass acreage. Rather, the entire process of planning, planting and monitoring requires attention to detail and does not lend itself to oversimplification.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is nothing mysterious about how coastal rivers, their estuaries, and their relationship with the sea all work to satisfy many of our greatest needs, including drinkable water, fish and shellfish, and soils essential for sustaining the production of food and fiber. Nor are the methods that have proved successful in the protection and restoration of watershed health difficult to understand. It is difficult, however, to imagine how we are to survive without healthy watersheds. Each watershed along California’s coast shows signs of increasing abuse from road construction and maintenance, livestock grazing, residential development, timber harvesting, and a dozen other human activities. In some cases whole streams have simply been wiped away. This document has been created to guide and support every person in the community, from homemaker to elected official, who wants her or his watershed to provide clean water, harvestable fish resources and other proof that life in the watershed cannot only be maintained but also enjoyed. It is based on years of experience with watershed protection and restoration in California. If citizen involvement is to be effective, it must draw not only on scientific knowledge but also on an understanding of how to translate individual views into commitments and capable group action. This guide briefly reviews the condition of California’s coastal watersheds, identifies the kinds of concerns that have led citizens to successful watershed protection efforts, explains why citizen, in addition to government, effort is essential for watershed protection and restoration to succeed, and puts in the reader’s hands both the technical and organizational “tools of the trade” in the hope that those who use this guide will be encouraged to join in efforts to make their watershed serve this and future generations better.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This synthesis presents a science overview of the major forest management Issues involved in the recovery of anadromous salmonids affected by timber harvest in the Pacific Northwest and Alaska. The issues involve the components of ecosystem-based watershed management and how best to implement them, including how to: Design buffer zones to protect fish habitat while enabling economic timber production; Implement effective Best Management Practices (BMPs) to prevent nonpoint-source pollution; Develop watershed-level procedures across property boundaries to prevent cumulative impacts; Develop restoration procedures to contribute to recovery of ecosystem processes; and Enlist support of private landowners in watershed planning, protection, and restoration. Buffer zones, BMPs, cumulative impact prevention, and restoration are essential elements of what must be a comprehensive approach to habitat protection and restoration applied at the watershed level within a larger context of resource concerns in the river basin, species status under the Endangered Species Act (ESA), and regional environmental and economic issues (Fig. ES. 1). This synthesis 1) reviews salmonid habitat requirements and potential effects of logging; 2) describes the technical foundation of forest practices and restoration; 3) analyzes current federal and non-federal forest practices; and 4) recommends required elements of comprehensive watershed management for recovery of anadromous salmonids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive losses of coastal wetlands in the United States caused by sea-level rise, land subsidence, erosion, and coastal development have increased hterest in the creation of salt marshes within estuaries. Smooth cordgrass Spartina altemiflora is the species utilized most for salt marsh creation and restoration throughout the Atlantic and Gulf coasts of the U.S., while S. foliosa and Salicomia virginica are often used in California. Salt marshes have many valuable functions such as protecting shorelines from erosion, stabilizing deposits of dredged material, dampening flood effects, trapping water-born sediments, serving as nutrient reservoirs, acting as tertiary water treatment systems to rid coastal waters of contaminants, serving as nurseries for many juvenile fish and shellfish species, and serving as habitat for various wildlife species (Kusler and Kentula 1989). The establishment of vegetation in itself is generally sufficient to provide the functions of erosion control, substrate stabilization, and sediment trapping. The development of other salt marsh functions, however, is more difficult to assess. For example, natural estuarine salt marshes support a wide variety of fish and shellfish, and the abundance of coastal marshes has been correlated with fisheries landings (Turner 1977, Boesch and Turner 1984). Marshes function for aquatic species by providing breeding areas, refuges from predation, and rich feeding grounds (Zimmerman and Minello 1984, Boesch and Turner 1984, Kneib 1984, 1987, Minello and Zimmerman 1991). However, the relative value of created marshes versus that of natural marshes for estuarine animals has been questioned (Carnmen 1976, Race and Christie 1982, Broome 1989, Pacific Estuarine Research Laboratory 1990, LaSalle et al. 1991, Minello and Zimmerman 1992, Zedler 1993). Restoration of all salt marsh functions is necessary to prevent habitat creation and restoration activities from having a negative impact on coastal ecosystems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Guánica Bay is a major estuary on the southwest coast of Puerto Rico. Significant coral reef ecosystems are present outside the bay. These valuable habitats may be impacted by transport of sediments, nutrients and contaminants from the watershed, through the bay and into the offshore waters. The National Oceanic and Atmospheric Administration’s (NOAA) National Centers for Coastal Ocean Science (NCCOS), in consultation with local and regional experts, conducted an interdisciplinary assessment of coral reef ecosystems, contaminants, sedimentation rates and nutrient distribution patterns in and around Guánica Bay. This work was conducted using many of the same protocols as ongoing monitoring work underway elsewhere in the U.S. Caribbean and has enabled comparisons among coral reef ecosystems between this study and other locations in the region. This characterization of Guánica marine ecosystems establishes benchmark conditions that can be used for comparative documentation of future change, including possible negative outcomes due to future land use change, or improvement in environmental conditions arising from management actions. This report is organized into six chapters that represent a suite of interrelated studies. Chapter 1 provides a short introduction to the study area. Chapter 2 is focused on biogeographic assessments and benthic mapping of the study area, including new surveys of fish, marine debris and reef communities on hardbottom habitats in the study area. Chapter 3 quantifies the distribution and magnitude of a suite of contaminants (e.g., heavy metals, PAHs, PCBs, pesticides) in both surface sediments and coral tissues. Chapter 4 presents results of sedimentation measurements in and outside of the bay. Chapter 5 examines the distribution of nutrients in in the bay, offshore from the bay and in the watershed. Chapter 6 is a brief summary discussion that highlights key findings of the entire suite of studies.