999 resultados para Flight muscles


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter presents the real time validation of fixed order robust 112 controller designed for the lateral stabilisation of a micro air vehicle named Sarika2. Digital signal processor (DSP) based onboard computer named flight instrumentation controller (FIC) is designed to operate under automatic or manual mode. FIC gathers data from multitude of sensors and is capable of closed loop control to enable autonomous flight. Fixed order lateral H-2 controller designed with the features such as incorporation of level I flying qualities, gust alleviation and noise rejection is coded on to the FIC. Challenging real time hardware in loop simulation (HILS) is done with dSPACE1104 RTI/RTW. Responses obtained from the HILS are compared with those obtained from the offline simulation. Finally, flight trials are conducted to demonstrate the satisfactory performance of the closed loop system. The generic design methodology developed is applicable to all classes of Mini and Micro air vehicles.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instrument landing systems (ILS) and the upcoming microwave landing systems (MLS) are (or are planned to be) very important navigational aids at most major airports of the world. However, their performance is directly affected by the features of the site in which they are located. Currently, validation of the ILS performance is through costly and time-consuming experimental methods. This paper outlines a powerful and versatile analytical approach for performing the site evaluation, as an alternative to the experimental methods. The approach combines a multi-plate model for the terrain with a powerful and exhaustive ray-tracing technique and a versatile and accurate formulation for estimating the electromagnetic fields due to the array antenna in the presence of the terrain. It can model the effects of the undulation, the roughness and the impedance (depending on the soil type) of the terrain at the site. The results computed from the analytical method are compared with the actual measurements and good agreement is shown. Considerations for site effects on MLS are also outlined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human sport doping control analysis is a complex and challenging task for anti-doping laboratories. The List of Prohibited Substances and Methods, updated annually by World Anti-Doping Agency (WADA), consists of hundreds of chemically and pharmacologically different low and high molecular weight compounds. This poses a considerable challenge for laboratories to analyze for them all in a limited amount of time from a limited sample aliquot. The continuous expansion of the Prohibited List obliges laboratories to keep their analytical methods updated and to research new available methodologies. In this thesis, an accurate mass-based analysis employing liquid chromatography - time-of-flight mass spectrometry (LC-TOFMS) was developed and validated to improve the power of doping control analysis. New analytical methods were developed utilizing the high mass accuracy and high information content obtained by TOFMS to generate comprehensive and generic screening procedures. The suitability of LC-TOFMS for comprehensive screening was demonstrated for the first time in the field with mass accuracies better than 1 mDa. Further attention was given to generic sample preparation, an essential part of screening analysis, to rationalize the whole work flow and minimize the need for several separate sample preparation methods. Utilizing both positive and negative ionization allowed the detection of almost 200 prohibited substances. Automatic data processing produced a Microsoft Excel based report highlighting the entries fulfilling the criteria of the reverse data base search (retention time (RT), mass accuracy, isotope match). The quantitative performance of LC-TOFMS was demonstrated with morphine, codeine and their intact glucuronide conjugates. After a straightforward sample preparation the compounds were analyzed directly without the need for hydrolysis, solvent transfer, evaporation or reconstitution. The hydrophilic interaction technique (HILIC) provided good chromatographic separation, which was critical for the morphine glucuronide isomers. A wide linear range (50-5000 ng/ml) with good precision (RSD<10%) and accuracy (±10%) was obtained, showing comparable or better performance to other methods used. In-source collision-induced dissociation (ISCID) allowed confirmation analysis with three diagnostic ions with a median mass accuracy of 1.08 mDa and repeatable ion ratios fulfilling WADA s identification criteria. The suitability of LC-TOFMS for screening of high molecular weight doping agents was demonstrated with plasma volume expanders (PVE), namely dextran and hydroxyethylstarch (HES). Specificity of the assay was improved, since interfering matrix compounds were removed by size exclusion chromatography (SEC). ISCID produced three characteristic ions with an excellent mean mass accuracy of 0.82 mDa at physiological concentration levels. In summary, by combining TOFMS with a proper sample preparation and chromatographic separation, the technique can be utilized extensively in doping control laboratories for comprehensive screening of chemically different low and high molecular weight compounds, for quantification of threshold substances and even for confirmation. LC-TOFMS rationalized the work flow in doping control laboratories by simplifying the screening scheme, expediting reporting and minimizing the analysis costs. Therefore LC-TOFMS can be exploited widely in doping control, and the need for several separate analysis techniques is reduced.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of lag damping is difficult owing to the delicate balance of drag, induced drag and Coriolis forces in the in‐plane direction. Moreover, induced drag” is sensitive to dynamic wake, bath shed and trailing components, and thus its prediction requires adequate unsteady‐wake representation. Accordingly, rigid‐blade flap‐lag equations are coupled with a three‐dimensional finite‐state wake model; three isolatcd rotor canfigurations with three, four and five blades are treated over a range of thrust levels, tack numbers, lag frequencies and advance ratios. The investigation includes convergence characteristics of damping with respect to the number of radial shape functions and harmonics of the wake model for multiblade modes of low frequency (< 1/ rev.) to high frequency (> 1/rev.). Predicted flap and lag damping levels are then compared with similar predictions with 1) rigid wake (no unsteady induced now), 2) Loewy lift deficiency and 3) dynamic inflow. The coverage also includes correlations with the measured lag regressive‐mode damping in hover and forward flight and comparisons with similar correlations with dynamic inflow. Lag‐damping predictions with the dynamic wake model are consistently higher than the predictions with the dynamic inflow model; even for the low frequency lag regressive mode, the number of wake harmonics should at least be equal to twice the number of blades.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The contributions of full-wake dynamics in trim analysis are demonstrated for finding the control inputs and periodic responses simultaneously, as well as in Floquet eigenanalysis for finding the damping levels. The equations of flap bending, lag bending, and torsion are coupled with a three-dimensional, finite state wake, and low-frequency (<1/rev) to high frequency (>1/rev) multiblade modes are considered. Full blade-wake dynamics is used in trim analysis and Floquet eigenanalysis. A uniform cantilever blade in trimmed flight is investigated over a range of thrust levels, advance ratios, number of blades, and blade torsional frequencies. The investigation includes the convergence characteristics of control inputs, periodic responses, and damping levels with respect to the number of spatial azimuthal harmonics and radial shape functions in the wake representation. It also includes correlation with the measured lag damping of a three-bladed untrimmed rotor. The parametric study shows the dominant influence of wake dynamics on control inputs, periodic responses, and damping levels, and wake theory generally improves the correlation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fuzzy logic system is developed for helicopter rotor system fault isolation. Inputs to the fuzzy logic system are measurement deviations of blade bending and torsion response and vibration from a "good" undamaged helicopter rotor. The rotor system measurements used are flap and lag bending tip deflections, elastic twist deflection at the tip, and three forces and three moments at the rotor hub. The fuzzy logic system uses rules developed from an aeroelastic model of the helicopter rotor with implanted faults to isolate the fault while accounting for uncertainty in the measurements. The faults modeled include moisture absorption, loss of trim mass, damaged lag damper, damaged pitch control system, misadjusted pitch link, and damaged flap. Tests with simulated data show that the fuzzy system isolates rotor system faults with an accuracy of about 90-100%. Furthermore, the fuzzy system is robust and gives excellent results, even when some measurements are not available. A rule-based expert system based on similar rules from the aeroelastic model performs much more poorly than the fuzzy system in the presence of high levels of uncertainty.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A energy-insensitive explicit guidance design is proposed in this paper by appending newlydeveloped nonlinear model predictive static programming technique with dynamic inversion, which render a closed form solution of the necessary guidance command update. The closed form nature of the proposed optimal guidance scheme suppressed the computational difficulties, and facilitate realtime solution. The guidance law is successfully verified in a solid motor propelled long range flight vehicle, for which developing an effective guidance law is more difficult as compared to a liquid engine propelled vehicle, mainly because of the absence of thrust cutoff facility. The scheme guides the vehicle appropriately so that it completes the mission within a tight error bound assuming that the starting point of the second stage to be a deterministic point beyond the atmosphere. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in the burnout time

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the newly developed nonlinear model predictive static programming technique with null range direction concept, a novel explicit energy-insensitive guidance design method is presented in this paper for long range flight vehicles, which leads to a closed form solution of the necessary guidance command update. Owing to the closed form nature, it does not lead to computational difficulties and the proposed optimal guidance algorithm can be implemented online. The guidance law is verified in a solid motor propelled long range flight vehicle, for which coming up with an effective guidance law is more difficult as compared to a liquid engine propelled vehicle (mainly because of the absence of thrust cutoff facility). Assuming the starting point of the second stage to be a deterministic point beyond the atmosphere, the scheme guides the vehicle properly so that it completes the mission within a tight error bound. The simulation results demonstrate its ability to intercept the target, even with an uncertainty of greater than 10% in burnout time.