929 resultados para Flexible Bronchoscopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A literal Liapunov stability analysis of a spacecraft with flexible appendages often requires a division of the associated dynamic potential into as many dependent parts as the number of appendages. First part of this paper exposes the stringency in the stability criteria introduced by such a division and shows it to be removable by a “reunion policy.” The policy enjoins the analyst to piece together the sets of criteria for each part. Employing reunion the paper then compares four methods of the Liapunov stability analysis of hybrid dynamical systems illustrated by an inertially coupled, damped, gravity stabilized, elastic spacecraft with four gravity booms having tip masses and a damper rod, all skewed to the orbital plane. The four methods are the method of test density function, assumed modes, and two and one-integral coordinates. Superiority of one-integral coordinate approach is established here. The design plots demonstrate how elastic effects delimit the satellite boom length.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an analytical calculation of break-out noise from a rectangular plenum with four flexible walls by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The breakout noise from rectangular plenums is important and the coupling between acoustic waves within the plenum and structural waves in the flexible plenum walls plays a critical role in prediction of the transverse transmission loss. The first step in breakout noise prediction is to calculate the inside plenum pressure field and the normal flexible plenum wall vibration by using an impedance-mobility approach, which results in a compact matrix formulation. In the impedance-mobility compact matrix (IMCM) approach, it is presumed that the coupled response can be described in terms of finite sets of the uncoupled acoustic subsystem and the structural subsystem. The flexible walls of the plenum are modeled as an unfolded plate to calculate natural frequencies and mode shapes of the uncoupled structural subsystem. The second step is to calculate the radiated sound power from the flexible walls using Kirchhoff-Helmholtz (KH) integral formulation. Analytical results are validated with finite element and boundary element (FEM-BEM) numerical models. (C) 2010 Acoustical Society of America. DOI: 10.1121/1.3463801]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water-mediated transformations provide a useful handle for exploring the flexibility in protein molecules and the invariant features in their hydration shells. Low-humidity monoclinic hen egg white lysozyme, resulting from such a transformation, has perhaps the lowest solvent content observed in any protein crystal so far and has a well-ordered structure. A detailed comparison involving this structure, low-humidity tetragonal lysozyme, and the other available refined crystal structures of the enzyme permits the delineation of the relatively rigid, moderately flexible and highly flexible regions of the molecule. The relatively rigid region forms a contiguous structural unit close to the molecular centroid and encompasses parts of of the main beta-structure and three alpha-helices. The hydration shell of the protein contains 30 invariant water molecules. Many of them are involved in holding different parts of the molecule together or in stabilizing local structure. Five of the six invariant water molecules attached to the substrate-binding region form part of a water cluster contiguous with the side-chains of the catalytic residues Glu-35 and Asp-52.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Modal approach is widely used for the analysis of dynamics of flexible structures. However, space analysts yet lack an intimate modal analysis of current spacecraft which are rich with flexibility and possess both structural and discrete damping. Mathematical modeling of such spacecraft incapacitates the existing real transformation procedure, for it cannot include discrete damping, demands uncomputable inversion of a modal matrix inaccessible due to its overwhelming size and does not permit truncation. On the other hand, complex transformation techniques entail more computational time and cannot handle structural damping. This paper presents a real transformation strategy which averts inversion of the associated real transformation matrix, allows truncation and accommodates both forms of damping simultaneously. This is accomplished by establishing a key relation between the real transformation matrix and its adjoint. The relation permits truncation of the matrices and leads to uncoupled pairs of coupled first order equations which contain a number of adjoint eigenvectors. Finally these pairs are solved to obtain a literal modal response of forced gyroscopic damped flexibile systems at arbitrary initial conditions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research on conducting polymers, organic light emitting diodes and organic solar cells has been an exciting field for the past decade. The challenge with these organic devices is the long term stability of the active material. Organic materials are susceptible to chemical degradation in the presence of oxygen and moisture. The sensitivity of these materials towards oxygen and moisture makes it imperative to protect them by encapsulation. Polymer nanocomposites can be used as encapsulation materials in order to prevent material degradation. In the present work, amine functionalized alumina was used as a cross-linking and reinforcing material for the polymer matrix in order to fabricate the composites to be used for encapsulation of devices. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy and Raman spectroscopy were used to elucidate the surface chemistry. Thermogravimetric analysis techniques and CHN analysis were used to quantify grafting density of amine groups over the surface of the nanoparticles. Mechanical characterizations of the composites with various loadings were carried out with dynamic mechanical analyzer. It was observed that the composites have good thermal stability and mechanical flexibility, which are important for an encapsulant. The morphology of the composites was evaluated using scanning electron microscopy and atomic force microscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the distributed storage setting introduced by Dimakis et al., B units of data are stored across n nodes in the network in such a way that the data can be recovered by connecting to any k nodes. Additionally one can repair a failed node by connecting to any d nodes while downloading at most beta units of data from each node. In this paper, we introduce a flexible framework in which the data can be recovered by connecting to any number of nodes as long as the total amount of data downloaded is at least B. Similarly, regeneration of a failed node is possible if the new node connects to the network using links whose individual capacity is bounded above by beta(max) and whose sum capacity equals or exceeds a predetermined parameter gamma. In this flexible setting, we obtain the cut-set lower bound on the repair bandwidth along with a constructive proof for the existence of codes meeting this bound for all values of the parameters. An explicit code construction is provided which is optimal in certain parameter regimes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mathematical modelling plays a vital role in the design, planning and operation of flexible manufacturing systems (FMSs). In this paper, attention is focused on stochastic modelling of FMSs using Markov chains, queueing networks, and stochastic Petri nets. We bring out the role of these modelling tools in FMS performance evaluation through several illustrative examples and provide a critical comparative evaluation. We also include a discussion on the modelling of deadlocks which constitute an important source of performance degradation in fully automated FMSs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of the Hagen-Poiseuille flow of a Newtonian fluid in a tube of radius R surrounded by an incompressible viscoelastic medium of radius R < r < HR is analysed in the high Reynolds number regime. The dimensionless numbers that affect the fluid flow are the Reynolds number Re = (rho VR/eta), the ratio of the viscosities of the wall and fluid eta(r) = (eta(s)/eta), the ratio of radii H and the dimensionless velocity Gamma = (rho V-2/G)(1/2). Here rho is the density of the fluid, G is the coefficient of elasticity of the wall and V is the maximum fluid velocity at the centre of the tube. In the high Reynolds number regime, an asymptotic expansion in the small parameter epsilon = (1/Re) is employed. In the leading approximation, the viscous effects are neglected and there is a balance between the inertial stresses in the fluid and the elastic stresses in the medium. There are multiple solutions for the leading-order growth rate s((0)), all of which are imaginary, indicating that the fluctuations are neutrally stable, since there is no viscous dissipation of energy or transfer of energy from the mean flow to the fluctuations due to the Reynolds stress. There is an O(epsilon(1/2)) correction to the growth rate, s((1)), due to the presence of a wall layer of thickness epsilon(1/2)R where the viscous stresses are O(epsilon(1/2)) smaller than the inertial stresses. An energy balance analysis indicates that the transfer of energy from the mean flow to the fluctuations due to the Reynolds stress in the wall layer is exactly cancelled by an opposite transfer of equal magnitude due to the deformation work done at the interface, and there is no net transfer from the mean flow to the fluctuations. Consequently, the fluctuations are stabilized by the viscous dissipation in the wall layer, and the real part of s(1) is negative. However, there are certain values of Gamma and wavenumber k where s((1)) = 0. At these points, the wall layer amplitude becomes zero because the tangential velocity boundary condition is identically satisfied by the inviscid flow solution. The real part of the O(epsilon) correction to the growth rate s((2)) turns out to be negative at these points, indicating a small stabilizing effect due to the dissipation in the bulk of the fluid and the wall material. It is found that the minimum value of s((2)) increases proportional to (H-1)(-2) for (H-1) much less than 1 (thickness of wall much less than the tube radius), and decreases proportional to H-4 for H much greater than 1. The damping rate for the inviscid modes is smaller than that for the viscous wall and centre modes in a rigid tube, which have been determined previously using a singular perturbation analysis. Therefore, these are the most unstable modes in the flow through a flexible tube

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The stability of Hagen-Poiseuille flow of a Newtonian fluid of viscosity eta in a tube of radius R surrounded by a viscoelastic medium of elasticity G and viscosity eta(s) occupying the annulus R < r < HR is determined using a linear stability analysis. The inertia of the fluid and the medium are neglected, and the mass and momentum conservation equations for the fluid and wall are linear. The only coupling between the mean flow and fluctuations enters via an additional term in the boundary condition for the tangential velocity at the interface, due to the discontinuity in the strain rate in the mean flow at the surface. This additional term is responsible for destabilizing the surface when the mean velocity increases beyond a transition value, and the physical mechanism driving the instability is the transfer of energy from the mean flow to the fluctuations due to the work done by the mean flow at the interface. The transition velocity Gamma(t) for the presence of surface instabilities depends on the wavenumber k and three dimensionless parameters: the ratio of the solid and fluid viscosities eta(r) = (eta(s)/eta), the capillary number Lambda = (T/GR) and the ratio of radii H, where T is the surface tension of the interface. For eta(r) = 0 and Lambda = 0, the transition velocity Gamma(t) diverges in the limits k much less than 1 and k much greater than 1, and has a minimum for finite k. The qualitative behaviour of the transition velocity is the same for Lambda > 0 and eta(r) = 0, though there is an increase in Gamma(t) in the limit k much greater than 1. When the viscosity of the surface is non-zero (eta(r) > 0), however, there is a qualitative change in the Gamma(t) vs. k curves. For eta(r) < 1, the transition velocity Gamma(t) is finite only when k is greater than a minimum value k(min), while perturbations with wavenumber k < k(min) are stable even for Gamma--> infinity. For eta(r) > 1, Gamma(t) is finite only for k(min) < k < k(max), while perturbations with wavenumber k < k(min) or k > k(max) are stable in the limit Gamma--> infinity. As H decreases or eta(r) increases, the difference k(max)- k(min) decreases. At minimum value H = H-min, which is a function of eta(r), the difference k(max)-k(min) = 0, and for H < H-min, perturbations of all wavenumbers are stable even in the limit Gamma--> infinity. The calculations indicate that H-min shows a strong divergence proportional to exp (0.0832 eta(r)(2)) for eta(r) much greater than 1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flexible-link mechanisms are those linkage mechanisms (or structures) which are capable of motion by virtue of elastic deformation of one or more;links. In such mechanisms a single flexible link; can replace several rigid links and joints resulting in fewer links, fewer pin joints, reduced overall weight and reduced mechanical error. In spite of such clear advantages, contributions toward flexible-link mechanisms remain very scarce. The area of flexible-link mechanisms offers much scope for further exploration. This paper attempts to show the potential of flexible-link mechanisms in accomplishing a kinematic task like path generation. Synthesis of a four-bar mechanism with a flexible rocker for circular and straight line path generation is carried out. Displacement analysis of the structure is carried out using finite element method (FEM) and synthesis is formulated and solved as an optimization problem. Several numerical examples are presented for illustration. Based on the results obtained with these examples, the flexible-link mechanism considered shows good promise for-path generation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mesogens containing four rings in the main core can accommodate one terminal and two nearby lateral chains on each outside aromatic ring. These compounds containing six chains present an enantiotropic nematic range which is influenced by the rigidity of the links. The conformational behaviour of the first methyleneoxy group within the chains was investigated by one and two dimensional C-13 NMR. The sign of the jump in chemical shifts when entering the nematic phase indicates the folding of each lateral branch. Dipolar oscillations during cross-polarization contact provide the values of the bond order parameter. The two First lateral fragments do not behave in the same way, demonstrating the influence of the fragment along which the chain is back: folded.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Flows with velocity profiles very different from the parabolic velocity profile can occur in the entrance region of a tube as well as in tubes with converging/diverging cross-sections. In this paper, asymptotic and numerical studies are undertaken to analyse the temporal stability of such 'non-parabolic' flows in a flexible tube in the limit of high Reynolds numbers. Two specific cases are considered: (i) developing flow in a flexible tube; (ii) flow in a slightly converging flexible tube. Though the mean velocity profile contains both axial and radial components, the flow is assumed to be locally parallel in the stability analysis. The fluid is Newtonian and incompressible, while the flexible wall is modelled as a viscoelastic solid. A high Reynolds number asymptotic analysis shows that the non-parabolic velocity profiles can become unstable in the inviscid limit. This inviscid instability is qualitatively different from that observed in previous studies on the stability of parabolic flow in a flexible tube, and from the instability of developing flow in a rigid tube. The results of the asymptotic analysis are extended numerically to the moderate Reynolds number regime. The numerical results reveal that the developing flow could be unstable at much lower Reynolds numbers than the parabolic flow, and hence this instability can be important in destabilizing the fluid flow through flexible tubes at moderate and high Reynolds number. For flow in a slightly converging tube, even small deviations from the parabolic profile are found to be sufficient for the present instability mechanism to be operative. The dominant non-parallel effects are incorporated using an asymptotic analysis, and this indicates that non-parallel effects do not significantly affect the neutral stability curves. The viscosity of the wall medium is found to have a stabilizing effect on this instability.