959 resultados para Fission track dating
Resumo:
Results of apatite fission tracks from twelve samples collected across a Borborema Province transect, northeastern Brazil, revealed two major paleothermal events: a cooling event occurred between Albian and late Cenomanian (110 - 80 Ma) and a second cooling event starting on early Paleocene (66 Ma). Given the wide expression of the studied area (sampling trend along four brazilian states) a correlation between the distribution of fission track data and the current geological / geomorphological scenario was made possible, considering the area’s tectono - stratigraphic past and its thermochronologic evolution until now. The fact that the employed thermochronologic tool relates to a relatively shallow geothermometer, substancially information for understanding the behavior of basement brittle tectonic was achieved. These data were used to analyze faults origin and reactivation, associated with sedimentary basins evolution in the context of South America - Africa continental breakup.
Resumo:
(U-Th)/He and fission-track analyses of apatite along deep-seated tunnels crossing high-relief mountain ranges offer the opportunity to investigate climate and tectonic forcing on the topographic evolution. In this study, the thermochronologic analysis of a large set of samples collected in the Simplon railway tunnel (western-central Alps; Italy and Switzerland) and along its surface trace, coupled with kinematic and structural analysis of major fault zones intersecting the tunnel, constrains the phenomena controlling the topographic and structural evolution, during the latest stage of exhumation of the Simplon Massif, and the timing in which they operated. The study area is located at the western margin of the Lepontine metamorphic dome where a complex nappe-stack pertaining to the Penninic and Ultrahelvetic domains experienced a fast exhumation from the latest Oligocene onward. The exhumation was mainly accommodated by a west-dipping low-angle detachment (the Simplon Fault Zone) which is located just 8 km to the west of the tunnel. However, along the section itself several faults related to two principal phases both with important dip-slip kinematics have been detected. Cooling rates derived from our thermocronological data vary from about 10 °C/Ma at about 10 Ma to about 35 °C/Ma in the last 5 Ma. Such increase in the cooling rate corresponds to the most important climatic change recorded in the northern hemisphere in the last 10 Ma, i.e. the shift to wetter conditions at the end of the Messinian salinity crisis and the inception of glacial cycles in the northern hemisphere. In addition, (U-Th)/He and fission-track age patterns lack of important correlation with the topography suggesting that the present-day relief morphology is the result of recent erosional dynamics. More in details, the (U-Th)/He tunnel ages show an impressive uniformity at 2 Ma, whereas cooling rates calculated at 1 Ma increase towards the two major valleys. This indicates a focusing of erosive processes in the valleys which led to the shaping of present-day topography. Structural analysis documents the presence of two phases of brittle deformation postdating the metamorphic phases in the area. The first one is directly related to the last phase of activity along the Simplon Fault Zone and is characterized by extension towards SO and vertical shortening. The young one is characterized by extension towards NO and horizontal shortening in a along the NE-SO direction. Structures related to the first phase of brittle deformation generate important variations in the older ages' dataset, until 3 Ma, suggesting that tectonics controlled rocks exhumation up to that age. Structures related to the second phase generate some variations also in the younger age dataset, highlighting the activity of faults bordering the massif and suggesting a continuous activity also after 2 Ma. However, most of (U-Th)/He tunnel ages, varying slightly around 2 Ma, document that the Simplon area has experienced primarily erosional exhumation in this time span. In conclusion, all our data suggest that in the central Italian Alps the climatic signal gradually overrode the tectonic effects after about 5 Ma, as a consequence of the climatic instability started at end of Messinian salinity crisis and improved by the onset of glaciations in the northern hemisphere.
Resumo:
The Calabrian-Peloritani arc represents key site to unravel evolution of surface processes on top of subducting lithosphere. During the Pleistocene, in fact the arc uplifted at rate of the order of about 1mm/yr, forming high-standing low-relief upland (figure 2). Our study is focused on the relationship between tectonic and land evolution in the Sila Massif, Messina strait and Peloritani Mts. Landforms reflect a competition between tectonic, climatic, and surficial processes. Many landscape evolution models that explore feedbacks between these competing processes, given steady forcing, predict a state of erosional equilibrium, where the rates of river incision and hillslope erosion balance rock uplift. It has been suggested that this may be the final constructive stage of orogenic systems. Assumptions of steady erosion and incision are used in the interpretation of exhumation and uplift rates from different geologic data, and in the formulation of fluvial incision and hillslope evolution models. In the Sila massif we carried out cosmogenic isotopes analysis on 24 samples of modern fluvial sediments to constrain long-term (~103 yr) erosion rate averaged on the catchment area. 35 longitudinal rivers profiles have been analyzed to study the tectonic signal on the landscape evolution. The rivers analyzed exhibit a wide variety of profile forms, diverging from equilibrium state form. Generally the river profiles show at least 2 and often 3 distinct concave-up knickpoint-bounded segments, characterized by different value of concavity and steepness indices. River profiles suggest three main stages of incision. The values of ks and θ in the lower segments evidence a decrease in river incision, due probably to increasing uplift rate. The cosmogenic erosion rates pointed out that old landscape upland is eroding slowly at ~0.1 mm/yr. In the contrary, the flanks of the massif is eroding faster with value from 0.4 to 0.5 mm/yr due to river incision and hillslope processes. Cosmogenic erosion rates mach linearly with steepness indices and with average hillslope gradient. In the Messina area the long term erosion rate from low-T thermochronometry are of the same order than millennium scale cosmogenic erosion rate (1-2 mm/yr). In this part of the chain the fast erosion is active since several million years, probably controlled by extensional tectonic regime. In the Peloritani Mts apatite fission-track and (U-Th)/He thermochronometry are applied to constraint the thermal history of the basement rock. Apatite fission-track ages range between 29.0±5.5 and 5.5±0.9 Ma while apatite (U-Th)/He ages vary from 19.4 to 1.0 Ma. Most of the AFT ages are younger than the overlying terrigenous sequence that in turn postdates the main orogenic phase. Through the coupling of the thermal modelling with the stratigraphic record, a Middle Miocene thermal event due to tectonic burial is unravel. This event affected a inner-intermediate portion of the Peloritani belt confined by young AFT data (<15 Ma) distribution. We interpret this thermal event as due to an out-of–sequence thrusting occurring in the inner portion of the belt. Young (U-Th)/He ages (c. 5 Ma) record a final exhumation stage with increasing rates of denudation since the Pliocene times due to postorogenic extensional tectonics and regional uplift. In the final chapter we change the spatial scale to insert digital topography analysis and field data within a geodynamic model that can explain surface evidence produced by subduction process.
Resumo:
An integrated array of analytical methods -including clay mineralogy, vitrinite reflectance, Raman spectroscopy on carbonaceous material, and apatite fission-track analysis- was employed to constrain the thermal and thermochronological evolution of selected portions of the Pontides of northern Turkey. (1) A multimethod investigation was applied for the first time to characterise the thermal history of the Karakaya Complex, a Permo-Triassic subduction-accretion complex cropping out throughout the Sakarya Zone. The results indicate two different thermal regimes: the Lower Karakaya Complex (Nilüfer Unit) -mostly made of metabasite and marble- suffered peak temperatures of 300-500°C (greenschist facies); the Upper Karakaya Complex (Hodul and the Orhanlar Units) –mostly made of greywacke and arkose- yielded heterogeneous peak temperatures (125-376°C), possibly the result of different degree of involvement of the units in the complex dynamic processes of the accretionary wedge. Contrary to common belief, the results of this study indicate that the entire Karakaya Complex suffered metamorphic conditions. Moreover, a good degree of correlation among the results of these methods demonstrate that Raman spectroscopy on carbonaceous material can be applied successfully to temperature ranges of 200-330°C, thus extending the application of this method from higher grade metamorphic contexts to lower grade metamorphic conditions. (2) Apatite fission-track analysis was applied to the Sakarya and the İstanbul Zones in order to constrain the exhumation history and timing of amalgamation of these two exotic terranes. AFT ages from the İstanbul and Sakarya terranes recorded three distinct episodes of exhumation related to the complex tectonic evolution of the Pontides. (i) Paleocene - early Eocene ages (62.3-50.3 Ma) reflect the closure of the İzmir-Ankara ocean and the ensuing collision between the Sakarya terrane and the Anatolide-Tauride Block. (ii) Late Eocene - earliest Oligocene (43.5-32.3 Ma) ages reflect renewed tectonic activity along the İzmir-Ankara. (iii) Late Oligocene- Early Miocene ages reflect the onset and development of the northern Aegean extension. The consistency of AFT ages, both north and south of the tectonic contact between the İstanbul and Sakarya terranes, suggest that such terranes were amalgamated in pre-Cenozoic times. (3) Fission-track analysis was also applied to rock samples from the Marmara region, in an attempt to constrain the inception and development of the North Anatolian Fault system in the region. The results agree with those from the central Pontides. The youngest AFT ages (Late Oligocene - early Miocene) were recorded in the western portion of the Marmara Sea region and reflect the onset and development of northern Aegean extension. Fission-track data from the eastern Marmara Sea region indicate rapid Early Eocene exhumation induced by the development of the İzmir-Ankara orogenic wedge. Thermochronological data along the trace of the Ganos Fault –a segment of the North Anatolian Fault system- indicate the presence of a tectonic discontinuity active by Late Oligocene time, i.e. well before the arrival of the North Anatolian Fault system in the area. The integration of thermochronologic data with preexisting structural data point to the existence of a system of major E-W-trending structural discontinuities active at least from the Late Oligocene. In the Early Pliocene, inception of the present-day North Anatolian Fault system in the Marmara region occurred by reactivation of these older tectonic structures.
Resumo:
The application of two low-temperature thermochronometers [fission-track analysis and (U-Th)/He analyses, both on apatite] to various tectonostratigraphic units of the Menderes and Alanya Massifs of Turkey has provided significant new constraints to the understanding of their structural evolution. The Menderes Massif of western Anatolia is one of the largest metamorphic core complexes on Earth. The integration of the geochronometric dataset presented in this dissertation with preexisting ones from the literature delineates three groups of samples within the Menderes Massif. In the northern and southern region the massif experienced a Late Oligocene-Early Miocene tectonic denudation and surface uplift; whereas data from the central region are younger, with most ages ranging between the Middle-Late Miocene. The results of this study are consistent with the interpretation for a symmetric exhumation of the Menderes Massif. The Alanya Massif of SW Anatolia presents a typical nappe pile consisting of thrust sheets with contrasting metamorphic histories. Petrological and geochronological data clearly indicate that the tectonometamorphic evolution Alanya started from Late Cretaceous with the northward subduction of an ‘Alanya ocean’ under the Tauride plate. As an effect of the closure of the İzmir–Ankara–Erzincan ocean, northward backthrusting during the Paleocene-Early Eocene created the present stacking order. Apatite fission-track ages from this study range from 31.8 to 26.8 Ma (Late Rupelian-Early Chattian) and point to a previously unrecognized mid-Oligocene cooling/exhumation episode. (U-Th)/He analysis on zircon crystals obtained from the island of Cyprus evidentiate that the Late Cretaceous trondhjemites of the Troodos Massif not recorded a significant cooling event. Instead results for the Late Triassic turbiditic sandstones of the Vlambouros Formation show that the Mamonia mélange was never buried enough to reach the closure temperature of the ZHe radiometric system (ca. 200°C), thus retaining the Paleozoic signature of a previous sedimentary cycle.
Resumo:
In many regions, tectonic uplift is the main driver of erosion over million-year (Myr) timescales, but climate changes can markedly affect the link between tectonics and erosion, causing transient variations in erosion rates. Here we study the driving forces of millennial to Myr-scale erosion rates in the French Western Alps, as estimated from in situ produced cosmogenic 10Be and a newly developed approach integrating detrital and bedrock apatite fission-track thermochronology. Millennial erosion rates from 10Be analyses vary between ~0.27 and ~1.33 m/kyr, similar to rates measured in adjacent areas of the Alps. Significant positive correlations of millennial erosion rates with geomorphic measures, in particular with the LGM ice thickness, reveal a strong transient morphological and erosional perturbation caused by repeated Quaternary glaciations. The perturbation appears independent of Myr-scale uplift and erosion gradients, with the effect that millennial erosion rates exceed Myr-scale erosion rates only in the internal Alps where the latter are low (<0.4 km/Myr). These areas, moreover, exhibit channels that clearly plot above a general linear positive relation between Myr-scale erosion rates and normalized steepness index. Glacial erosion acts irrespective of rock uplift and thus not only leads to an overall increase in erosion rates but also regulates landscape morphology and erosion rates in regions with considerable spatial gradients in Myr-scale tectonic uplift. Our study demonstrates that climate change, e.g., through occurrence of major glaciations, can markedly perturb landscape morphology and related millennial erosion rate patterns, even in regions where Myr-scale erosion rates are dominantly controlled by tectonics.
Resumo:
There are different views about the amount and timing of surface uplift in the Transantarctic Mountains and the geophysical mechanisms involved. Our new interpretation of the landscape evolution and tectonic history of the Dry Valleys area of the Transantarctic Mountains is based on geomorphic mapping of an area of 10,000 km(2). The landforms are dated mainly by their association with volcanic ashes and glaciomarine deposits and this permits a reconstruction of the stages and timing of landscape evolution. Following a lowering of base level about 55 m.y. ago, there was a phase of rapid denudation associated with planation and escarpment retreat, probably under semiarid conditions. Eventually, downcutting by rivers, aided in places by glaciers, graded valleys to near present sea level. The main valleys were flooded by the sea in the Miocene during a phase of subsidence before experiencing a final stage of modest upwarping near the coast. There has been remarkably little landform change under the stable, cold, polar conditions of the last 15 m.y. It is difficult to explain the Sirius Group deposits, which occur at high elevations in the area, if they are Pliocene in age. Overall, denudation may have removed a wedge of rock with a thickness of over 4 km at the coast declining to 1 km at a point 75 km inland, which is in good agreement with the results of existing apatite fission track analyses. It is suggested that denudation reflects the differences in base level caused by high elevation at the time of extension due to underplating and the subsequent role of thermal uplift and flexural isostasy. Most crustal uplift (2-4 km) is inferred to have occurred in the early Cenozoic with 400 m of subsidence in the Miocene followed by 300 m of uplift in the Pliocene.
Resumo:
We synthesized published data on the erosion of the Alpine foreland basin and apatite fission-track ages from the Alps to infer the erosional sediment budget history for the past 5 m.y. The data reveal that erosion of the Alpine foreland basin is highest in front of the western Alps (between 2 and 0.6 km) and decreases eastward over a distance of 700 km to the Austrian foreland basin (similar to 200 m). For the western Alps, erosion rates are >0.6 km/m.y., while erosion rates for the eastern foreland basin and the adjacent eastern Alps are <0.1 km/m.y., except for a small-scale signal in the Tauern Window. The results yield a large ellipsoidal, orogen-crossing pattern of erosion, centered along the western Alps. We suggest that accelerated erosion of the western Alps and their foreland basin occurred in response to regional-scale surface uplift, related to lithospheric unloading of the Eurasian slab along the Eurasian-Adriatic plate boundary. While we cannot rule out recent views that global climate change led to substantial erosion of the European Alps since 5 Ma, we postulate that regional-scale tectonic processes have driven erosion during this time, modulated by an increased erosional flux in response to Quaternary glaciations.
Resumo:
The uranium content of glass from chilled margins of oceanic tholeiitic basalt flows is generally <0.1 ppm, even for old samples with highly altered crystalline interiors. Such low values represent the original whole rock concentrations, although subsequent to eruption low-temperature weathering has added uranium, and other elements, to the crystalline portions of these basalts. Consideration of the K/U ratios of altered samples suggests that basalt weathering may provide the major oceanic sink for these two elements.
Resumo:
Since studies on deep-sea cores were carried out in the early 1990s it has been known that ambient temperature may have a marked affect on apatite fission track annealing. Due to sluggish annealing kinetics, this effect cannot be quantified by laboratory annealing experiments. The unknown amount of low-temperature annealing remains one of the main uncertainties for extracting thermal histories from fission track data, particularly for samples which experienced slow cooling in shallow crustal levels. To further elucidate these uncertainties, we studied volcanogenic sediments from five deep-sea drill cores, that were exposed to maximum temperatures between ~10° and 70°C over geological time scales of ~15-120 Ma. Mean track lengths (MTL) and etch pit diameters (Dpar) of all samples were measured, and the chemical composition of each grain analyzed for age and track length measurements was determined by electron microprobe analysis. Thermal histories of the sampled sites were independently reconstructed, based on vitrinite reflectance measurements and/or 1D numerical modelling. These reconstructions were used to test the most widely used annealing models for their ability to predict low-temperature annealing. Our results show that long-term exposure to temperatures below the temperature range of the nominal apatite fission track partial annealing zone results in track shortening ranging between 4 and 11%. Both chlorine content and Dpar values explain the downhole annealing patterns equally well. Low chlorine apatite from one drill core revealed a systematic relation between Si-content and Dpar value. The question whether Si-substitution in apatite has direct and systematic effects on annealing properties however, cannot be addressed by our data. For samples, which remained at temperatures <30°C, and which are low in chlorine, the Laslett et al. [Laslett G., Green P., Duddy I. and Gleadow A. (1987) Thermal annealing of fission tracks in apatite. Chem. Geol. 65, 1-13] annealing model predicts MTL up to 0.6 µm longer than those actually measured, whereas for apatites with intermediate to high chlorine content, which experienced temperatures >30°C, the predictions of the Laslett et al. (1987) model agree with the measured MTL data within error levels. With few exceptions, predictions by the Ketcham et al. [Ketcham R., Donelick R. and Carlson W. (1999) Variability of apatite fission-track annealing kinetics. III: Extrapolation to geological time scales. Am. Mineral. 84/9, 1235-1255] annealing model are consistent with the measured data for samples which remained at temperatures below ~30°C. For samples which experienced maximum temperatures between ~30 and 70°C, and which are rich in chlorine, the Ketcham et al. (1999) model overestimates track annealing.
Resumo:
During Ocean Drilling Program Leg 190 several turbidite successions in the Nankai Trough were drilled through including Pleistocene trench fill (Sites 1173 and 1174), Pleistocene-Pliocene slope basin deposits and underlying trench fill (Sites 1175 and 1176), Miocene Shikoku Basin deposits (Site 1177), and upper Miocene trench fill (Site 1178). Sands from the Pleistocene trench-fill succession of the Nankai Trough are of mixed derivation with significant monomineralic components (quartz and feldspar) and mafic to intermediate volcanic rock fragments, in addition to sedimentary and less abundant metamorphic detritus. They have a source in the Izu collision zone in central Honshu. Sands from the slope and accreted trench fill at Sites 1175 and 1176 are dominated by quartz with less abundant feldspar, sedimentary rock fragments, and only minor volcanic and metamorphic rock fragments. In contrast to the trench turbidites of Sites 1173 and 1174, these sands are very quartzose with characteristic radiolarian chert fragments. Volcanic rock fragments are mainly of silicic composition. Potential sources of these sands are uplifted subduction complexes of southwest Japan. Sands from the accreted trench turbidites at Site 1178 have clast types similar to those at Sites 1175 and 1176. In contrast, however, framework detrital modes are distinctive, with Site 1178 sands having substantially lower total quartz contents and more abundant fine-grained sedimentary rock fragments. These sands were also probably derived from the island of Shikoku, but their composition indicates that sedimentary rocks were abundant in the source area and these may have been Miocene forearc basin successions that were largely removed by erosion. Erosional remnants of Miocene forearc basin deposits are present on the Kii Peninsula east-northeast of Shikoku. Erosion followed a phase of exhumation of the Shimanto Belt indicated by apatite fission track ages at ~10 Ma. Sand in the lower-upper Miocene turbidites of the lower Shikoku Basin section at Site 1177 is more varied in composition, with the upper part of the unit similar to Site 1178 (i.e., rich in sedimentary rock fragments) and the lower part similar to those at Sites 1175 and 1176 (i.e., rich in quartz with some silicic volcanic rock fragments). Sands from the lower part of the Miocene turbidite unit were derived from a continental source with plutonic and volcanic rocks, possibly the inner zone of southwest Japan.