976 resultados para Fish Oil


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish-oil supplementation can reduce circulating triacylglycerol (TG) levels and cardiovascular risk. This study aimed to assess independent associations between changes in platelet eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) and fasting and postprandial (PP) lipoprotein concentrations and LDL oxidation status, following fish-oil intervention. Fiftyfive mildly hypertriacylglycerolaemic (TG 1·5–4·0 mmol/l) men completed a double-blind placebo controlled cross over study, where individuals consumed 6 g fish oil (3 g EPA � DHA) or 6 g olive oil (placebo)/d for two 6-week intervention periods, with a 12-week wash-out period in between. Fish-oil intervention resulted in a significant increase in the platelet phospholipid EPA (+491 %, P,0·001) and DHA (+44 %, P,0·001) content and a significant decrease in the arachidonic acid (210 %, P,0·001) and g-linolenic acid (224 %, P,0·001) levels. A 30% increase in ex vivo LDL oxidation (P,0·001) was observed. In addition, fish oil resulted in a significant decrease in fasting and PP TG levels (P,0·001), PP non-esterified fatty acid (NEFA) levels, and in the percentage LDL as LDL-3 (P�0·040), and an increase in LDLcholesterol (P�0·027). In multivariate analysis, changes in platelet phospholipid DHA emerged as being independently associated with the rise in LDL-cholesterol, accounting for 16% of the variability in this outcome measure (P�0·030). In contrast, increases in platelet EPA were independently associated with the reductions in fasting (P�0·046) and PP TG (P�0·023), and PP NEFA (P�0·015), explaining 15–20% and 25% of the variability in response respectively. Increases in platelet EPA � DHA were independently and positively associated with the increase in LDL oxidation (P�0·011). EPA and DHA may have differential effects on plasma lipids in mildly hypertriacylglycerolaemic men.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The whole-body fatty acid balance method was used to investigate the fatty acid metabolism in Murray cod (Maccullochella peelii peelii) fed diets containing canola (CO) or linseed oil (LO). Murray cod were able to elongate and desaturate both 18 : 2n − 6 and 18 : 3n − 3. In fish fed the CO diet, 54.4% of the 18 : 2n − 6 consumed was accumulated, 38.5% oxidized and 6.4% elongated and desaturated to higher homologs. Fish fed the LO diet accumulated 52.9%, oxidized 37% and elongated and desaturated 8.6% of the consumed 18 : 3n − 3. The overall roles of n − 6 fatty acids appeared more important in Murray cod compared to other freshwater species. Murray cod also showed a preferential order of utilization of C18 fatty acid for energy production (18 : 3n − 3 > 18 : 2n − 6 > 18 : 1n − 9). Moreover, it is demonstrated that an increase in dietary 18 : 3n − 3 is directly responsible of increased desaturase activity and augmented saturated fatty acid accumulation in the fish body. The present study also suggests that, in the context of the possible maximization of the natural ability of fish to produce long chain polyunsaturated fatty acids, the whole-body approach can be considered well suited and informative and Murray cod is a suited candidate to fish oil replacement for its diets.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Murray cod, an Australian native freshwater fish, supports a relatively small but increasing aquaculture industry in Australia. Presently, there are no dedicated commercial diets available for Murray cod; instead, nutritionally sub-standard feeds formulated for other species are commonly used. The aim of the present investigation was to assess the suitability of two plant based lipid sources, canola oil (CO) and linseed oil (LO), as alternatives to fish oil for juvenile Murray cod. Five iso-nitrogenous, iso-calorific, iso-lipidic semi-purified experimental diets were formulated with 17% lipid originating from 100% cod liver oil (FO), 100% canola oil, 100% linseed oil and 1 : 1 blends of canola and cod liver oil (CFO) and 1 : 1 blends of linseed and cod liver oil (LFO). Each of the diets was fed to apparent satiation twice daily to triplicate groups of 50 Murray cod with initial mean weights of 6.45 ± 1.59 g for 84 days at 22 °C. Final mean weight, specific growth rate and daily feed consumption were significantly higher for the FO and LFO treatments compared to the LO treatment. Feed conversion and protein efficiency ratios were not significantly different amongst treatments. Experimental diets containing vegetable oil and vegetable oil blend(s) had significantly higher concentrations of n-6 fatty acids, predominantly in the form of linoleic acid (LA), while n-3 fatty acids were present in significantly higher concentrations in LO and LFO treatments. The fatty acid composition of Murray cod fillet was reflective of the dietary lipid source. Fillet of fish fed the FO was highest in EPA (20:5n-3), ArA (20:4n-6) and DHA (22:6n-3). Fish fed the CO diet had high concentrations of oleic acid (OlA) (192.2 ± 10.5 mg g lipid− 1), while the fillet of Murray cod fed the LO diet was high in α-linolenic acid (LnA) (107.1 ± 6.7 mg g lipid− 1). The present study suggests that fish oil can be replaced by up to 100% with canola oil and by up to 50% with linseed oil in Murray cod diets with no significant effect on growth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The aim of the present investigation was to quantify the fate of C18 and long chain polyunsaturated dietary fatty acids in the freshwater fish, Murray cod, using the in vivo, whole-body fatty acid balance method. Juvenile Murray cod were fed one of five iso-nitrogenous, iso-energetic, semipurified experimental diets in which the dietary fish oil (FO) was replaced (0, 25, 50, 75, and 100%) with a blended vegetable oil (VO), specifically formulated to match the major fatty acid classes [saturated fatty acids, monounsaturated fatty acids, n-3 polyunsaturated fatty acids (PUFA), and n-6 PUFA] of cod liver oil (FO). However, the PUFA fraction of the VO was dominated by C18 fatty acids, while C20/22 fatty acids were prevalent in the FO PUFA fraction. Generally, there was a clear reflection of the dietary fatty acid composition across each of the five treatments in the carcass, fillet, and liver. Lipid metabolism was affected by the modification of the dietary lipid source. The desaturation and elongation of C18 PUFAs increased with vegetable oil substitution, supported by the occurrence of longer and higher desaturated homologous fatty acids. However, increased elongase and desaturase activity is unlikely to fulfill the gap observed in fatty acid composition resulting from decreased highly unsaturated fatty acids intake.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

n two independent experiments, the effects of dietary inclusion of canola and linseed oil were evaluated in juvenile Murray cod (Maccullochella peelii peelii, Mitchell) over a 112-day period. In each experiment, fish received one of five semi-purified diets in which the dietary fish oil was replaced with canola oil (Experiment A) or linseed oil (Experiment B) in graded increments of 25% (0–100%). Murray cod receiving the graded canola and linseed oil diets ranged in final weight from 112.7 ± 7.6 to 73.8 ± 9.9 g and 93.9 ± 3.6 to 74.6 ± 2.2 g, respectively, and exhibited a negative trend in growth as the inclusion level increased. The fatty acid composition of the fillet and liver were modified extensively to reflect the fatty acid composition of the respective diets. Levels of oleic acid (18:1 n-9) and linoleic acid (18:2 n-6) increased with each level of canola oil inclusion while levels of α-linolenic acid (18:3 n-3) increased with each level of linseed oil inclusion. The concentration of n-3 highly unsaturated fatty acids in the fillet and liver decreased as the amount of vegetable oil in the diets increased. It is shown that the replacement of fish oil with vegetable oils in low fish meal diets for Murray cod is possible to a limited extent. Moreover, this study reaffirms the suggestion for the need to conduct ingredient substitution studies for longer periods and where possible to base the conclusions on regression analysis in addition to anova.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The status of wild capture fisheries has induced many fisheries and conservation scientists to express concerns about the concept of using forage fish after reduction to fishmeal and fish oil, as feed for farmed animals, particularly in aquaculture. However, a very large quantity of forage fish is being also used untransformed (fresh or frozen) globally for other purposes, such as the pet food industry. So far, no attempts have been made to estimate this quantum, and have been omitted in previous fishmeal and fish oil exploitation surveys. On the basis of recently released data on the Australian importation of fresh or frozen fish for the canned cat food industry, here we show that the estimated amount of raw fishery products directly utilized by the cat food industry equates to 2.48 million metric tonnes per year. This estimate, plus the previously reported global fishmeal consumption for the production of dry pet food suggest that 13.5% of the total 39.0 million tonnes of wild caught forage fish is used for purposes other than human food production. This study attempts to bring forth information on the direct use of fresh or frozen forage fish in the pet food sector that appears to have received little attention to this date and that needs to be considered in the global debate on the ethical nature of current practices on the use of forage fish, a limited biological resource.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The use of ten fatty acid methyl ester reference standards coupled with a detailed quantification method was shown to significantly optimize the fatty acid determination of selected fish and microalgal oils when compared to methods that use only one reference standard (C19:0 or C23:0) as a relative response factor. When using the mixture of ten reference standards after transesterifying oils with NaOH/BF3, determination of total fatty acids, eicosapentaenoic acid and docosahexaenoic acid improved by an average of 7.3, 11.5 and 8.4%, respectively. Furthermore, improvements of 13.9, 18.9 and 6.8% of total fatty acids, EPA and DHA, respectively, were obtained when using the mixture of reference standards for fatty acid determination after directly extracting and transesterifying oil contained in microalgal cells with a mixture of methanol, HCl and chloroform. Fatty acid methyl ester standards dissolved in isooctane showed <5% variability throughout 130 days of stability testing when stored at −20 °C. The optimized method can be used for improving the quantification of fatty acids in both oils (fish and microalgal oils) and dry microalgal cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dietary fatty acids are known to modulate fatty acid metabolism in fish. However, the innate capability of fish to bioconvert short chain fatty acids to health promoting long chain fatty acids (LCPUFA) is insufficient to compensate for a reduced dietary intake. While many studies have focused on the dietary regulation of the fatty acid bioconversion pathways, there is little known regarding the effects of the dietary levels of C18 polyunsaturated fatty acids (PUFA) on fatty acid metabolism. Here, we show a greater degree of apparent enzyme activity (Δ-6 desaturase) in fish fed a diet with higher amounts of dietary C18 PUFA. In particular, fish receiving high amounts of dietary C18 PUFA had a greater amount of Δ-6 desaturase activity acting on 18:3n-3 than 18:2n-6. However, with the gradual reduction of dietary C18 PUFA there was a shift in substrate preference of Δ-6 desaturase from 18:3n-3 to 18:2n-6. This information will provide valuable insight for the implementation of low fish oil diets, which permit the maintenance of n-3 LCPUFA levels in farmed Murray cod.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Combined effects of hydrogen and air flow rates on the peak response of selected neutral lipid classes (triacylglycerol, diacylglycerol, monoacylglycerol, free fatty acids, and ethyl esters) were studied to optimize and calibrate the Iatroscan Mk-6s Chromarod system for the qualitative and quantitative analysis of lipid classes by thin-layer chromatography (TLC) with flame ionization detection in fish oil during the transesterification process. Air flow rate of 2 L/min, hydrogen flow rate of 150-160 mL/min, and scan rate of 30 s/rod were found to be the optimum conditions. All samples were also analyzed by high performance liquid chromatography (HPLC) with evaporative light scattering detection. Quantitative results obtained by TLC with the flame ionization detection method were comparable to those obtained from HPLC with evaporative light scattering detection.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The comparative effect of tuna oil (TO) and salmon oil (SO) on the plasma and liver lipid and fatty acid compositions in Sprague Dawley rats was investigated. The total triacylglycerol (TG) and total cholesterol (TC) concentrations in liver was significantly decreased in the TO group; TG level in liver was also significantly decreased in the SO group. The mRNA expression of HMG-CoA reductase in liver was significantly down-regulated in the TO and SO groups relative to the control group. The plasma TG and TC were decreased in TO, but not in SO; plasma low-density lipoprotein and very low-density lipoprotein levels in TO and SO were decreased compared with the control group. The total n-3 polyunsaturated fatty acid (PUFA) in plasma and liver phospholipids was significantly elevated in the TO and SO. Docosahexaenoic acid (22:6n-3) and eicosapentaenoic acid (20:5n-3) in tissues were significantly increased in the TO and SO, respectively. In this study, TO had a more beneficial effect on liver TC and plasma TG, TC, high-density lipoprotein in rats than SO. The likely mechanism for lowering liver and plasma cholesterol by n-3 PUFA is to suppress the mRNA expression of gene encoding HMG-CoA reductase responsible for cholesterol biosynthesis.

PRACTICAL APPLICATIONS

The beneficial effects of n-3 polyunsaturated fatty acids (PUFAs) from fish and fish oil on human health is derived from their role in modulating membrane lipid composition and affecting metabolic and signal-transduction pathways. In the present study, we demonstrated that n-3 PUFA, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) from tuna and salmon oils can be effectively incorporated into tissue membranes. Tuna oil rich in DHA has more beneficial effect on liver total cholesterol (TC) and plasma triglyceride, TC and HDL in rats than salmon oil, which is rich in EPA. The present data could provide information for the potential application of fish oils as components of functional food, and selected for fortification with different fish oils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Global and Asian aquaculture have witnessed a ten-fold increase in production from 1980 to 2004. However, the relative percent contribution to production of each of the major commodities has remained almost unchanged. For example, the contribution of freshwater finfish has declined from 71 to 66 percent in Asia but has remained unchanged globally over the last 20 to 30 years. This fact has dictated trends in the use of fish as a feed for cultured stocks. The growth in the sector has gone hand in hand with an increasing dependence on fish as feed, either directly or indirectly. In a number of countries in the Asia-Pacific region, the aquaculture sector has surpassed the capture fisheries sector in its respective contributions to the gross domestic product (GDP). Aquaculture’s increased contribution to national GDPs can be taken as a clear indication of the contribution of the sector to food security and poverty alleviation. The use of finfish and other aquatic organisms as a feed source can be through direct utilization of whole or chopped raw fish in wet form, through fishmeal and fish oil in formulated feeds, and/or as live fish, although the latter is uncommon and the overall amounts used are relatively small. In the first two categories, the fish used are often termed “trash fish/low-value fish”. Although attempts have been made to define this term, all definitions have a certain degree of ambiguity and/or subjectivity. In this regional review, the amount of fish used as feed sources based on the above categories was estimated primarily from the production data, supported by assumptions on the inclusion levels of fishmeal in formulated feeds and observed feed conversion efficiencies for both formulated feeds and for stock fed trash fish/low-value fish directly. A scenario for the use of fish as feed was developed by starting from the levels of aquaculture production recorded in 2004 and assuming increases in production volumes of 10, 15 and 20 percent by 2010, respectively, for the three trajectories. In parallel, the pattern of wild fish use as feed was projected to change as fish and shrimp farmers increasingly replace farmmade feeds by incorporating trash fish/low-value fish with manufactured feeds that include fishmeal. Also, the fishmeal inclusion rates in manufactured feeds are falling slowly, and this has been incorporated into the projections. The regional review also deals with the production of fishmeal using trash fish/low-value fish in the Asia-Pacific region. Regional fishmeal production as a whole is relatively low when compared with that of major fishmeal-producing countries such as Chile, Iceland and Norway, amounting to approximately 1 million tonnes per year. However, there is a trend towards increasing the use of fish industry waste, such as from the tuna canning industry in Thailand. The fishmeal produced in the region is priced considerably lower than globally traded fishmeal, but its quality is poorer. Total fishmeal use in Asian aquaculture in 2004 was estimated as 2 388 million tonnes, the highest proportion of this being used for crustacean aquaculture (1 418 million tonnes). Based on growth predictions (to year 2010) in the sector and improvements to feed quality and management, it is expected that the quantity of fishmeal used in Asian aquaculture will be slightly less than at present. An estimated 240 000 tonnes of fish oil is used in Asian aquaculture, principally in shrimp feeds. Based on production estimates of commodities in 2004 that rely on trash fish/low-value fish as the main feed source, this regional review suggests that Asian aquaculture currently uses between 2 465 and 3 882 million tonnes, an amount that is predicted to decrease to between 1.890 and 2 795 million tonnes by 2010. The use of trash fish/low-value fish and fishmeal by the aquaculture sector has been repeatedly adjudicated as a non-sustainable practice, and globally the sector is seeking to reduce its dependence on fish as feed through improved feed management practices and development of better quality feeds and feed formulations using alternative ingredients. Over the next few years, decreases in the use of trash fish/low-value fish are also expected to be achieved through better conversion of raw materials into fishmeal and fish oil during the reduction processes. The “way forward” in addressing the issue of the use of fish as feed in aquaculture in the Asia-Pacific region includes the need for a concerted regional research thrust to reduce the use of fish as feed sources in aquaculture, as has been achieved in the animal husbandry sector. Secondly, there is a need to increase farmer awareness on the use of trash fish as feed. This is achievable, considering the similar progress that has been made by the region’s shrimp farming sector, which almost exclusively involves small-scale practitioners who are often clustered in a given locality. The analysis also suggests that the use of trash fish/low-value fish in aquaculture may be compatible with improving food security and alleviating poverty. In Asia, trash fish/low-value fish is mostly landed in areas where there are other suitable fish commodities for human consumption. To make the trash fish/low-value fish suitable and available for human consumption would involve some degree of value-adding and transportation costs, which are likely to increase the price to beyond the means of the consumer, particularly in remote rural areas. Under such a scenario, the direct or indirect use of this perishable resource as a feed source to produce a consumable commodity appears to make economic sense and appears to be the most logical use for overall human benefit. In this manner, trash fish/low-value fish contributes to food security by increasing income generation opportunities and hence contributes to poverty alleviation. Another factor that needs to be taken into account is the large numbers of artisanal fishers who harvest this raw material. The continued use of trash fish/low-value fish, therefore, allows these fishers to maintain their livelihoods1. Admittedly, this is an area that warrants more detailed investigation, from resource use, livelihoods and economic viewpoints.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The compliance or elasticity of the arterial system, an important index of circulatory function, diminishes with increasing cardiovascular risk. Conversely, systemic arterial compliance improves through eating of fish and fish oil. We therefore tested the value of high intake of alpha-linolenic acid, the plant precursor of fish fatty acids. Fifteen obese people with markers for insulin resistance ate in turn four diets of 4 weeks each: saturated/high fat (SHF), alpha-linolenic acid/low fat (ALF), oleic/low fat (OLF), and SHF. Daily intake of alpha-linolenic acid was 20 g from margarine products based on flax oil. Systemic arterial compliance was calculated from aortic flow velocity and aortic root driving pressure. Plasma lipids, glucose tolerance, and in vitro LDL oxidizability were also measured. Systemic arterial compliance during the first and last SHF periods was 0.42 +/- 0.12 (mean +/- SD) and 0.56 +/- 0.21 units based on milliliters per millimeter of mercury. It rose significantly to 0.78 +/- 0.28 (P < .0001) with ALF; systemic arterial compliance with OLF was 0.62 +/- 0.19, lower than with ALF (P < .05). Mean arterial pressures and results of oral glucose tolerance tests were similar during ALF, OLF, and second SHF; total cholesterol levels were also not significantly different. However, insulin sensitivity and HDL cholesterol diminished and LDL oxidizability increased with ALF. The marked rise in arterial compliance at least with alpha-linolenic acid reflected rapid functional improvement in the systemic arterial circulation despite a rise in LDL oxidizability. Dietary n-3 fatty acids in flax oil thus confer a novel approach to improving arterial function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Rapeseed (canola) and other monounsaturated fatty acid (MUFA)-rich oils are viewed as good candidates to replace, at least partially, the fish oil normally included in aquaculture feeds (aquafeeds). In fact, their utilization as a dietary lipid source for aquatic animals has some advantages over other readily available terrestrial alternative oils and fats; however, this is not without difficulties. MUFA are, indeed, easily digestible and a good source of available energy, and their deposition into fish flesh is considered to be less detrimental than other fatty acid classes, from a human nutritional viewpoint. This chapter attempts to review the principal information available regarding the utilization of MUFA-rich vegetable oil (VO) in aquaculture feed. Initially the chapter focuses on the rapeseed oil eRa) industry, agronomy, quality improvement, processing, and uses, and the main chemical and physical characteristics of rapeseed oil and other MUFA-rich va such as olive oil, peanut oil, and rice bran oil, amongst others. Following this, the potential advantages and challenges of using these alternative oils in the aquaculture feed industry are presented and discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fish oil replacement in aquaculture feeds results in major modifications to the fatty acid makeup of cultured fish. Therefore, in vivo fatty acid biosynthesis has been a topic of considerable research interest. Evidence suggests that pyridoxine (vitamin B6) plays a role in fatty acid metabolism, and in particular, the biosynthesis of LC-PUFA has been demonstrated in mammals. However, there is little information on the effects of dietary pyridoxine availability in fish fed diets lacking LC-PUFA. This study demonstrates a relationship between dietary pyridoxine supplementation and fatty acid metabolism in rainbow trout. In particular, the dietary pyridoxine level was shown to modulate and positively stimulate the activity of the fatty acid elongase and Δ-6 and Δ-5 desaturase enzymes, deduced by the whole-body fatty acid balance method. This activity was insufficient to compensate for a diet lacking in LC-PUFA but does highlight potential strategies to maximize this activity in cultured fish, especially when fish oil is replaced with vegetable oils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The implementation of alternative lipid sources for use in aquaculture is of considerable interest globally. However, the possible benefit of using stearidonic acid (SDA)–rich fish oil (FO) alternatives has led to scientific confusion. Two hundred and forty rainbow trout (Oncorhynchus mykiss) were fed 1 of 4 diets (3 replicate tanks/treatment) containing either FO, linseed oil (LO), echium oil, or mixed vegetable oil (72% LO, 23% sunflower oil, and 6% canola oil) as the dietary lipid source (16.5%) for 73 d to investigate the competition and long-chain PUFA (LC-PUFA) biosynthesis between the fatty acid substrates α-linolenic acid (ALA) and SDA. SDA was more efficiently bioconverted to LC-PUFA compared with ALA. However, when the dietary lipid sources were directly compared, the increased provision of C18 PUFA within the LO diet resulted in no significant differences in (n-3) LC-PUFA content compared with fish fed the other diets. This study therefore shows that, rather than the previously speculated substrate competition, the limiting process in the apparent in vivo (n-3) LC-PUFA biosynthesis appears to be substrate availability. Rainbow trout fed the SDA- and ALA-rich dietary lipid sources subsequently had similar significant reductions in (n-3) LC-PUFA compared with fish fed the FO diet, therefore providing no additional dietary benefit on (n-3) LC-PUFA concentrations.